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Abstract

The goal of this project is to investigate current methods for modelling the effect
of ocean waves on the sea ice cover, and conduct sensitivity analyses on the model
developed by Williams, Bennetts, Squire, Dumont and Bertino. (Williams et al.
2013)

1 Introduction

With climate change causing a reduction in the polar ice covers, commercial activity
in these regions has increased and there is therefore more demand for high precision
predictions regarding the structure of sea ice covers. Although no ice-ocean models
currently include wave-ice effects, the notion of doing so goes back almost two decades
(Williams et al. 2013, pp.1-4). With recent advances in theory, computational power
and measurement accuracy, a working model that deals with these effects is now within
reach. The Waves in Ice Model (WIM) is the first attempt at such a model. It has been
developed by a number of researchers around the world over the last decade (Williams
et al. 2013) and forms the focus of this project.

2 Model Outline

Here we present a rough description of how WIM is structured. First note that sea
ice covers can usually be divided up into two portions. These include a region of
relatively solid ice we call pack ice and a region of broken ice floes we call the marginal
ice zone (MIZ), where broken ice floes are just chunks of broken ice. WIM accepts
data on waves in the open ocean, and outputs the length of the MIZ and the floe size
distribution (FSD) (see Figure 1).



Waves in the model are described by a spectral density function S(ω, x, t), which
provides the distribution of angular frequencies ω at each point x in the domain at time
t. These functions are useful because their moments provide important wave statistics.
We define the nth moment by:

mn =

∫ ∞
0

ωnS(ω) dω

From which we can obtain the peak period Tp and significant wave height Hs by:

Tp = 2π
m0

m1

, Hs = 4
√
m0

These quantities represent the average period of the waves in the spectrum, and the
dominant wave height respectively. Note that there is no directional parameter in S
because WIM is one dimensional, thus we disregard the waves not travelling directly
along the modelled cross section. The input wave data is provided in the form of a
Bretshneider spectrum:

S(ω, 0, t) = SB(ω, Tp, Hs) =
1.25H2

sT
5

8πT 4
p

e−1.25(T/Tp)4

where T = 2π
ω

.
The wave spectrum is moved through the ice by solving the wave energy balance

equation:
1

cg
DtS =

1

cg

(
∂S

∂t
+ cg

∂S

∂x

)
= −α̂S

where cg(ω) is the group velocity, α̂ is the attenuation coefficient and Dt is the material
derivative. The group velocity can be thought of as the speed the waves centred around
a particular frequency are travelling. The attenuation coefficient gives the rate at
which energy is lost as the waves move through the ice, and is mainly determined
by wave scattering at the edges of individual floes. This means that it depends on
the extent of ice breakage, so we need to check for breakage as the spectrum moves.
This is implemented in WIM by discretising the ω, x and t domains of S and checking
for breakage only at the end of each time step. We can then show using Lagrangian
coordinates that the advection of S, which is the distance the spectrum travels, and the
attenuation of S can be calculated separately between breaking events. To calculate
the advection we simply solve the wave energy balance equation without resistance:

DtS =
∂S

∂t
+ cg

∂S

∂x
= 0



numerically at each time step, and store the result in the intermediate spectrum Ŝ. To
calculate the attenuation we derive the approximation:

Snj,r ≈ Ŝnj,r exp(−α̂nj,rcg∆t)

from 1
cg
DtS = −α̂S (Appendix A.1). The relation governing α̂ is complex, so a finite

range of values is pre-calculated, then interpolated.
To check for ice breakage, we use S to calculate Pε, the probability the ice will

break. We choose a critical probability Pc, and if Pε > Pc we reduce the maximum floe
size at the current x grid point to λ

2
where λ is the average wavelength of the spectrum.

WIM is implemented in MatLab. At each time step we iterate through the time
domain, and at each time step,

1. Advect S,

2. Iterate through our spatial domain and for each x grid point,

(a) Calculate the attenuation of S,

(b) Check for ice breakage.

3 Investigations

I began my project by attempting to understand in detail how the model works. My
supervisor was unfamiliar with the numerical scheme used in the advection step and
asked me to investigate. I then became curious about the approximation used in the
attenuation step and attempted to derive it myself.

3.1 Advection Equation

During the advection step we assume there is no resistance to the waves, so the wave
energy balance equation reduces to DtS = 0. The model is able to use a variety of
numerical methods to solve this equation, although it’s authors recommend the default
choice of the Lax Wendrof scheme with Superbee flux limiting. The Lax Wendrof
scheme is a finite difference method (FDM) with second order accuracy in both space
and time. It provides numerical solutions to equations of the form:

∂f(x, t)

dt
=
∂g(f(x, t))

∂x



where f(x, 0) is given. It acts in two steps, first calculating f
n+1/2
i±1/2 from:

f
n+1/2
i±1/2 −

fni +fni±1

2

(1/2)∆t
=
gni+1 − gni

∆x

and then fn+1
i from:

fn+1
i − fni

∆t
=
g
n+1/2
i+1/2 − g

n+1/2
i−1/2

∆x
When solving for f , we define the flux at i, n to be:

F n
i = g(fni )

Flux limiting is used in high resolution schemes to reduce excessive oscillations around
sharp changes in slope. We first approximate the flux by some scheme:

F n
i ≈ Gn

i + hni

where Gn
i is a low order approximation and hni is a higher order term. We then define

the variable rni by:

rni =
fni − fni−1

fni+1 − fni
which measures the rate at which f is changing. Finally we can introduce the flux
limiter function φ(ri) and write:

F n
i = Gn

i + φ(ri)h
n
i

The only requirement on φ is that it be non negative, but the idea is that for extreme
values of r only the lower order approximation is used, but for r close to 1 the higher
order term is included. The authors recommend that the Superbee flux limiter φ(r) =
max[0,min(2r, 1),min(r, 2)] be used in the WIM.

Rearranging the wave energy balance equation, we have:

DtS = 0⇒ ∂S

∂t
+ cg

∂S

∂x
= 0⇒ ∂S

∂t
= −cg

∂S

∂x

where cg is the group velocity. This is of the form to which we can apply the Lax-
Wendrof scheme, taking S = f and g(f) = −cgS. From the first step of the scheme
we can calculate:

F
n+1/2
i±1/2 = −cgSn+1/2

i±1/2 = −cgSni −
cg
2

(
1− cg

∆t

∆x

)(
Sni+1 − Sni

)



where −cgSni is thought of as a low order approximation to −cgSn+1/2
i±1/2 and

−1

2

(
1− cg

∆t

∆x

)(
sni+1 − Sni

)
is thought of as a higher order term. We thus apply the Superbee flux limiter function
to this higher order term and obtain:

−cgSn+1/2
i±1/2 = −cgSni −

cg
2

(
1− cg

∆t

∆x

)(
Sni+1 − Sni

)
φ(ri±1)

We can then calculate Sn+1
i from the second step of the Lax-Wendroff scheme.

3.2 Attenuation Equation

After advection, we calculate the attenuation due to ice resistance. When we include
ice resistance in the wave energy balance equation we obtain:

1

cg
DtS(ω, x.t) = −α̂(ω, c, h, 〈D〉)S(ω, x, t)

where α̂ depends explicitly on wave frequency ω, ice concentration c, height h, and
average floe size 〈D〉, so implicitly on just ω, x and t. This equation can be expressed in
Lagrangian coordinates as d

dx
S = −α̂S where dx

dt
= cg (Appendix A.1). By integrating

and approximating, we obtain:

Snj,r ≈ Ŝnj,r exp(−α̂nj,rcg∆t)

Alternatively, we can derive (Appendix A.1),

Snj,r ≈ Ŝnj,r exp

(
1

2

[
(C − 2)α̂nj,r − Cα̂nj−1,r

]
cg∆t

)
where C = cg

∆t
∆x

is the Courant number, which gives the proportion of one grid cell
the spectrum travels through in on time step.

Currently the model is coded so that users have a choice as to whether they use
ice data from the current or previous x grid step when calculating attenuation. This
essentially means users can choose whether or not to use ice that has already been
broken up by the spectrum in the current time step.



When using the former attenuation formula with ice data from the previous spatial
grid step, there is no sensitivity to Courant number C. Using the second formula
introduces sensitivity as the amount of broken ice the wave travels through now depends
on C. However, when using ice data from the current grid step the original formula is
quite sensitive to C, but this is reduced when using the new formula. This is because
the new formula essentially weights the contribution of previous and current grid step
ice data to the total attenuation by the speed the spectrum is travelling. However this
is not overly important, as when C = 1 the results in each case are almost identical
and we can usually choose our x and t steps to give C = 1. However, when we allow
different frequencies in the spectrum to travel at different speeds or extend the model
to two dimensions, it may become important.

4 Sensitivity Tests

I then conducted a series of sensitivity tests, reproducing the tests in the Williams et
al. paper (Williams et al. 2013) and then devising my own. The two most interesting
of these were sensitivity to different incident wave spectra and sensitivity to different
values for the Young’s modulus of the ice.

4.1 Spectra

The input open ocean wave data is parametrized with the Bretshneider spectrum:

S(ω, 0, t) = SB(ω, Tp, Hs) =
1.25H2

sT
5

8πT 4
p

e−1.25(T/Tp)4

where T is wave period, Tp is the peak or average wave period, and Hs is the significant
wave height. Note that T = 2π

ω
, where ω is frequency. The default values used for

testing were Tp = 9.5, Hs = 3. The integral over ω of any wave spectrum S is called
the zeroth moment. It is denoted m0, and must satisfy m0 = 1

16
H2
s .

Broadly speaking, there are two ways ocean waves are formed in the open ocean.
Fetch waves are generated by winds acting over long distances with typical periods of
13− 14 seconds, whereas swell waves are formed by gravity and typically have shorter
periods. We therefore should test how the model behaves to incident wave spectra with
two peaks, rather than one. To do this we need to ensure all the spectra possess the
same total energy. Total energy is proportional to H2

s , and we can obtain new spectra
with a given value of H2

s by superimposing spectra with significant wave height H1

and H2 such that H2
1 +H2

2 = H2
s (Appendix A.2). In Figure 2 we plot how the model



responds to a selection of spectrums obtained by superimposing two Bretschneider
spectrums of peak period 6 and 13 seconds respectively, with varying fractions of the
total wave energy coming from each. For example, the green line corresponds to a
spectrum with 75 percent of its energy associated with a peak period of 6 seconds, and
25 percent associated with a peak period of 13 seconds.

Immediately we see that when high frequencies are dominant, the maximum flow
sizes in the MIZ are small, as when the ice breaks the maximum floe size is reduced to
half the average wavelength. Also, the length of the MIZ is smaller, as high frequencies
cannot penetrate very far into the ice cover.

To test sensitivity to just the shape of different spectrums, we must ensure they
have the same average periods. To do this we define the normal spectrum by:

SN(ω) =
H2
s

16σ
√

2π
e−

1
2(ω−ωpσ )

2

We can then superimpose two normal spectrums with significant wave height
√

4.5
metres and peak periods of approximately 6.314 and 13 seconds respectively, and com-
pare the results with a normal spectrum of significant wave height 8.5 metres and a
peak period of 9 seconds. We can show (Appendix A.2) that the sum of the first
two spectrums also has a significant wave height of 3 metres and a peak period of 8.5
seconds. The output of the model is plotted in Figure 3.

We can see from this that the presence of low frequency waves changes the length
of the MIZ by at least 30km. From this we can conclude that the model is sensitive to
spectrum shape, in particular to the spread of the spectrum and the presence of low
frequency waves.

4.2 Young’s Modulus

Currently the model assumes a fixed value for the Young’s Modulus of the sea ice,
Y = 5 G Pa, but this is problematic as sea ice is an inhomogenous material and Y will
vary throughout. We therefore wish to test how sensitive the model is to variations
in Y . To do this we simply include an extra dimension to our look-up table for the
attenuation coefficient, and use a simpler interpolation method.

In Figure 4 we plot the model output for different values of Y . From the plot,
it appears that only the length of the MIZ is affected by varying Y . However, the
maximum floe sizes at the points where the curves appear to lie on top of one another
actually differ after the tenth decimal place. This difference can be exacerbated by
changing the peak period of the incident spectrums.



These results are perhaps unphysical, and point to a need to investigate the be-
haviour of the numerics used when testing different values of Y .

5 Conclusions

This project has provided me with valuable insight into the challenges of modelling
physical systems. Making progress requires not only knowledge of the physical system
and its deterministic mathematical formulation, but skills with numerical methods,
probability and computer science in order to implement the model on a computer. I
learned a number of important lessons throughout this project as to the importance
of numerical methods in producing accurate models, and how the way in which a
mathematical model is translated into a computer algorithm can deeply affect the
results produced. The project has inspired me to continue studying this field for my
honours project, with the goal of extending the model to two spatial dimensions.

I have thoroughly enjoyed this project and attending the CSIRO Big Day In. I
would like to thank AMSI and CSIRO for the opportunity and my supervisor Dr.
Luke Bennetts for his encouragement and support.

A Calculations

A.1 Attenuation Coefficient

In one spatial dimension Dt = d
dt

. If we fix ω and consider the spectrum in Lagrangian
coordinates, we take x to be a function x(x0, t), which gives the position at time t
of the point of the wave spectrum initially at x0. If we fix x0 and vary x, then t
becomes a function t(x, x0), which gives the time the point initially at x0 arrives at x.
We can then calculate dx

dt
= cg, so dt

dx
= 1

cg
by the inverse function theorem, and thus

1
cg
DtS = dt

dx
d
dt
S = d

dx
S by the chain rule. We can therefore rewrite 1

cg
DtS = −α̂S as:

d

dx
S = −α̂S



Solving this equation we obtain:

d

dx
S(x, t(x, x0)) = −α̂(x, t(x, x0))S(x, t(x, x0))

⇒dS

dx

1

S
= −α̂

⇒
∫ x

a

dS

dx

1

S
dx =

∫ x

a

−α̂ dx (for constant a < x)

⇒ log(S(x, t(x, x0)))− log(S(a, t(a, x0))) =

∫ x

a

−α̂ dx

⇒S(x, t(x, x0)) = S(a, t(a, x0))e
∫ x
a −α̂ dx

If the distance between a and x is small, we can approximate
∫ x
a
−α̂ dx by α̂(x, t(x, x0))·

(x− a) and write:

S(x, t(x, x0)) ≈ S(a, t(a, x0))e−α̂(x,t(x,x0))·(x−a)

Let Ŝ(x, t(x, x0)) denote the spectrum after advection but before attenuation. If we
set x = a+ cg∆t, where ∆t is the time step used in our numerical scheme, we have:

S(a, t(a, x0)) = S(a, t(x, x0)−∆t) = Ŝ(x, t(x, x0))

and so
S(x, t(x, x0)) ≈ Ŝ(x, t(x, x0))e−α̂(x,t(x,x0))·cg∆t

If we take x to be a spatial grid point in our numerical scheme, we can discretise to
obtain,

Snj,r ≈ Ŝnj,r exp(−α̂nj,rcg∆t)
Instead of approximating

∫ x
a
−α̂ dx by α̂(x, t(x, x0)) · (x− a), we could also use the

mid point rule, ∫ x

a

−α̂ dx ≈ −α̂(x, t(x, x0))− α̂(a, t(a, x0))

2
· (x− a)

However, if we set x = a+cg∆t as before, then t(a, x0) = t(x, x0)−∆t and a = x−cg∆
will only lie on a spatial grid point if cg∆t = ∆x, that is, if the courant number

C = cg∆t

∆x
= 1. However if C < 1, we can write:

−α̂(a, t(a, x0)) = −α̂(x− cg∆t, t(x, x0)−∆t)

≈ −(1− C)α̂(x, t(x, x0)−∆t)− Cα̂(x−∆x, t(x, x0)−∆t)



We can then sub this into the midpoint rule and discretise to obtain:

Snj,r ≈ Ŝnj,r exp

(
1

2

[
−α̂nj,r − (1− C)α̂n−1

j,r − Cα̂n−1
j−1,r

]
cg∆t

)
In our numerical scheme we attenuate before we test for ice breakage, so we can replace
−α̂nj,r with −α̂n−1

j,r , and the above reduces to:

Snj,r ≈ Ŝnj,r exp

(
1

2

[
(C − 2)α̂nj,r − Cα̂nj−1,r

]
cg∆t

)
A.2 Wave Spectrum Energy and Peak Period

If S = S1 + S2 for spectrums S1, S2 with significant wave heights H1, H2 respectively,
we have:

1

16
H2
s =

∫ ∞
0

S dω =

∫ ∞
0

S1 + S2 dω

=

∫ ∞
0

S1 dω +

∫ ∞
0

S2 dω =
1

16
H2

1 +
1

16
H2

2

The total energy of the spectrum S is proportion toH2
s , so we can obtain new spectrums

with a given value of H2
s by superimposing spectrums with significant wave height H1

and H2 such that H2
1 +H2

2 = H2
s .

To test sensitivity to the spectrums overall shape, such as the number of peaks it
has, we should also make sure the average period is the same between spectrums. The
peak period is given by (Formsys 2013)

Tp = 2π
m0

m1

For simplicity we define a normally distributed wave spectrum:

SN(ω) =
H2
s

16σ
√

2π
e−

1
2(ω−ωpσ )

2

where ωp = 2π
Tp

. Note that the first moment of SN is just H2
sωp
16

. Thus if we define

S = S1 +S2 as before, where each spectrum is normally distributed, and S, S1, S2 have
peak periods Tp, T1, T2 respectively, the equation Tp = 2πm0

m1
allows us to derive the

equation:

T1 =
H2

1T2Tp
T2H2

s − TpH2
2



This allows us to choose Tp and T2, and combined with the expression H2
s = H2

1 +H2
2

determine T1 so that S1 + S2 has the peak period Tp and the same total energy as the
single peak spectrum centred at Tp with significant wave height Hs.

A.3 Figures

Figure 1: Example modelled region of the MIZ.
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Figure 2: Sensitivity to different superimposed Bretshneider spectrums.
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