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Define a function m(k, n, q) as the number of n x n invertible matrices with k nonzero entries 
over a finite field of q elements.  This project investigated the formulae and behaviour of 
m(k, n, q).  In the first two weeks there was an exploration of the research done on matrices 
over finite fields.  A great deal was learnt, but little could be found relating to this specific 
question. 
 
I became more familiar with combinatorics.  By looking at the different possible 
arrangements of nonzero and zero entries, formulae was found for when k=n, n+1, n+2.  In 
the special case when q=2 there exist no invertible matrices such that k>n²-n+1 and formulae 
was found for m(k, n²-n+1, 2) and m(k, n²-n, 2). 
 
Both computer (the Sydney University algebraic system Magma) and paper methods were 
used to look at the shape of m(k, n, 2), it is not quite a symmetric function, but does peak 
near the middle, close to k=n²/2. 
 
I was a bit disappointed that I was not able to find a general formula, whether it be messy, 
inductive or otherwise for m(k, n, q) or even m(k, n, 2).  I sometimes found it frustrating 
counting the many possible cases of linearly independent arrangements of vectors.  
However, the opportunity to experience mathematics in a research environment, rather than 
a lecture theatre was not to be missed.  I would like to thank AMSI and Sydney University 
for giving me this wonderful opportunity, as well as Anthony Henderson for his support.  
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