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Abstract

The primary goal of this project was to define a new bicategory V -Poly whose
1-cells are an enriched analogue of a recently studied categorical notion of polyno-
mials, and guided by the idea that monads in V -Poly should be Σ-free symmetric
multicategories (also known as coloured operads). To reach this goal, we first dis-
cuss generalisations of polynomials within a category theoretic framework. We then
discuss various well-established bicategories before embarking upon a definition of
V -Poly.

1 An introduction

We are all familiar with expressions of the form 2X 3 + 4X 2 + 9, where the variable or
indeterminate X is some element from a field F or ring. More generally, a polynomial
has the form

anX n + an−1X n−1 + an−2X n−2 + . . .+ a2X 2 + a1X + a0

where each ai is a constant. Alternatively, the above may be re-written as
∑n

i=0 aiX
i using

the sigma notation.

However, we may also think of polynomials as functions mapping X from some do-
main to its value in the codomain. For example,

P : R→ R, P(X ) = 2X 3 + 4X 2 + 9

is a polynomial function.



We may further extend this to cases where X is some 2× 2 matrix (with entries over
F), and the coefficients themselves are also 2× 2 matrices. For example,

P : M2→M2, P(X ) =
�
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X 2 +

�
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9

p
2

�

sends a 2×2 matrix to another 2×2 matrix. But can we generalise this further still? That
is, would it be possible to replace the indeterminate X by more abstract mathematical
structures like groups or topological spaces? The answer is yes, but let us first consider
the case where both indeterminates and coefficients are sets.

2 Polynomial functions and sets

For fixed sets A, B, C , N and R, along with our indeterminate X , a typical example1 of a
polynomial function P(X ) : Set→ Set is the following

P(X ) = A+ B × X N + C × X R

where X N denotes the set2 of all functions from N to X , “×” is the usual cartesian product
of sets and “+” represents the disjoint union of sets. Now for some fixed mapping p :
E→ B, we may also write a polynomial function in more general form3 as follows

P(X ) =
∑

b∈B

∏

e∈Eb

X (2.1)

where Eb is the fibre of p over b. That is, Eb = {e ∈ E : p(e) = b} (a set indexed by an
element b ∈ B).

Example 1. Let B = {1, 2,3, 4}, and suppose the fibres of p over each element in B are
E1 = {a1, a2}, E2 = {b1, b2, b3}, E3 = ∅ and E4 = {d1, d2}. Now since E1 has two elements,
we have

∏

e∈E1

X = X × X . However, we may also think of X × X as the set of all functions

1Example taken from Kock’s set of notes on Polynomial Functors, p1
2The reason for this notation is because

�

�X N
�

� = |X ||N |. For example, if N = {1, 2} and X = {a, b, c},
then a function f : N → X is a set {(1, b), (2, c)}. Since there are 3× 3 different such functions, we have
�

�X N
�

�= 9= |X ||N |.
3Formula adapted from the more general case of polynomials with multiple input and output variables.

See Gambino and Kock [2010] p7



from a set with only two elements to X , namely the set X 2. That is, X × X ∼= X 2. Therefore,

P(X ) = X 2 + X 3 + X∅ + X 2

= X 2 + X 3 + 1+ X 2

∼= X 3 + 2× X 2 + 1

where we denote X∅ by 1 as there is only one function from the empty set to X . Note also
that X 2 + X 2 ∼= 2× X 2 since the disjoint union X 2 + X 2 gives us precisely two copies of X 2.

So the above polynomial P does indeed map a set X to another set X 3+2×X 2+1. In
the language of category theory, we say that P is a functor from Set to Set (the category
of all small sets).

3 A more abstract view on polynomials

While equation (2.1) defines a mapping from sets to sets, it is beneficial to present a
different view of the same process to allow for cases where X may not be a set. The basic
idea behind this view is outlined below.

Example 2. Consider the functor P : Set→ Set defined by P(X ) = X 3 + 2× X 2 + 1 in the
previous example. We may think of the final result as a process involving the following steps.

[1] Begin with a set I = {X } containing only the set X (a set of sets).

[2] Let E = {X1, X2, . . . , X7} be a set and consider a mapping s from E to I. The fibre of s
over X is the entire set E, and we can think of this as creating 7 copies of X .

[3] Next, let B = {X 3, X 2, X 2, 1} and consider the mapping p : E → B which sends
X1, X2, X3 to X 3, X4, X5 to X 2 and X6, X7 to X 2. Denote by 1 those elements in B
whose pre-image under p is empty.

[4] Finally, let t be a mapping from B to J = {X 3 + 2× X 2 + 1} (where again J is a one
element set).

In other words, the above process may be represented by the data

I
s
←− E

p
−→ B

t
−→ J



We define diagrams of the above type to be a polynomial, and the associated polyno-
mial functor as the composite ΣtΠp∆s from the following diagram

Set/I
∆s−→ Set/E

Πp
−→ Set/B

Σt−→ Set/J

where ∆s denotes a pullback along s, Πp is a distributivity pullback4 around p, and Σt

denotes post-composition with t.

So why has a polynomial functor been defined this way? Consider an object in the
slice category Set/I , a map f : X → I where I = {∗} is a singleton. Note that since
I contains only the one element, there is a canonical isomorphism between f and X
(regarded as the fibre of f over ∗). Pulling back along s gives us an object E × X → E
in Set/E . Since pullbacks are not unique, take E × X → E to be the trivial mapping
(e, x) 7→ e. Like before, we may define a map X × E → E by the collection of its fibres
over each element e ∈ E. This gives us

(E × X )e∈E
∼= {e} × X ∼= X

The functor Πp : Set/E → Set/B is defined by Πp(Z) =
∑

b∈B

∏

e∈Eb

Ze
5. To see that

∑

b∈B

∏

e∈Eb

Ze

belongs to Set/B , first consider the product
∏

e∈Eb

Ze. This is the fibre over b ∈ B of some

map
∑

b∈B

∏

e∈Eb

Ze → B. Hence, taking the disjoint union over all b ∈ B gives us a family of

cartesian products indexed by B and so Πp(Z) ∈ Set/B .

Therefore applying the functor to E × X , we get

Πp (E × X ) =
∑

b∈B

∏

e∈Eb

(E × X )e∈E
∼=
∑

b∈B

∏

e∈Eb

X

Finally, if J is also a singleton, the functor Σt simply maps the family of sets
∑

b∈B

∏

e∈Eb

X

indexed by B to itself (regarded as a set with only one element
∑

b∈B

∏

e∈Eb

X or as the fibre

of t over ∗ in J).

So in the case where both I and J are singletons, the polynomial functor ΣtΠp∆s is
identical to the polynomial described by (2.1) (up to isomorphism). However, the idea

4See Weber [2011] for a definition of distributivity pullbacks.
5Definition taken from p30 of Kock’s notes on Polynomial functors



works even in the case where I and J are not singletons but are finite sets. The result is
a polynomial function with more than one input variable and one output variable.

Although the discussion so far has restricted our objects I , E, B and J to be elements of
the category Set, the way we have defined a polynomial and its associated functor allows
for more general categories E (where E has all pullbacks and ∆p has a right adjoint).
And so a polynomial consists of objects I , E, B, J ∈ E and arrows s, p, t as shown below

I
s
←− E

p
−→ B

t
−→ J

and the associated polynomial functor is the same composite ΣtΠp∆s (but with E/I in-
stead of Set/I )

E/I
∆s−→ E/E

Πp
−→ E/B

Σt−→ E/J
Note: Since the polynomial functor is completely specified by its polynomial, we shall

refer to the polynomial itself as the polynomial functor as this fits in better with the idea
of enrichment6.

4 Enriched polynomial functors

Having now defined our polynomial functor as the diagram I
s
←− E

p
−→ B

t
−→ J where

I , E, B, J ∈ E , it turns out that we may define a new bicategory PolyE with the following
data:

[1] the objects (or 0-cells) are the objects of E ,

[2] the arrows (or 1-cells) are diagrams of the form I
s
←− E

p
−→ B

t
−→ J ,

[3] and the arrows between arrows (or 2-cells) are a pair of arrows 〈φ0,φ1〉 in E such
that the following diagram commutes

6See entry on Polynomial Functors at http://ncatlab.org/nlab/show/polynomial+functor
where the polynomial itself is used as a synonym for the functor.



E B

I J

E′ B′

p

s

φ0

t

φ1

s′ p′ t ′

and the middle square is a pullback square.

The composition of such 1-cells has been extensively studied by Gambino and Kock7,
and Weber8 but due to its complexity, the reader is referred to the relevant papers for a
definition.

However, the key point to note is that if p is the identity arrow, then PolyE reduces to
the well known bicategory SpanE . It is also quite well established that a monad in the
bicategory SpanE is an internal category in E .

Another well known bicategory is that of V -Mat. Consider a span from I to J as
denoted by the diagram I

s
←− E

t
−→ J (where I , E, J ∈ Set). Let

HomSet(i, j) = M(i, j) = {e ∈ E : s(e) = i, t(e) = j}

Now suppose M(i, j) is no longer a set but an object in some monoidal category V , and
define the composition of two such objects M(i, j) and M( j, k) as follows

M(i, k) =
∐

j∈J

M(i, j)⊗M( j, k)

where ⊗ is called a tensor product. The end result is the bicategory V -Mat, and as it turns
out, a monad in this bicategory is a V -Category (or a category enriched in the monoidal
category V ).

We are now in a position to be able to state the original aim of this project; to define a
bicategory V -Poly such that a monad in this bicategory should form a Σ-free symmetric
multicategory9.

7See Gambino and Kock [2010] p9
8See Weber [2011] p16
9See http://ncatlab.org/nlab/show/symmetric+multicategory for a definition of a sym-

metric multicategory. Here, Σ-free means that if L is the set of all linear orders on the objects i1, . . . , in,



5 The beginnings of a definition

Suppose a polynomial I
s
←− E

p
−→ B

t
−→ J is given, where each of I , E, B and J are sets

and p has finite fibres (i.e., the fibre of p over b is finite for all b ∈ B). Consider a
b ∈ B such that t(b) = j for some j ∈ J , and take its fibre over b to form the set
p−1(b) = {e1, . . . , en}. Now for each ei in the set p−1(b), applying the mapping s results
in another set {s (e1) , . . . s (en)} = {i1, . . . , in}. Finally, placing some linear order on the
set {i1, . . . , in} gives an ordered sequence (i1, . . . , in).

In other words, for an arbitrary b ∈ B and some linear order on {i1, . . . , in}, we may
define a new hom-set as follows

HomSet ((i1, . . . , in) ; j) = M ((i1, . . . , in) ; j) =
�

b ∈ B : t(b) = j, s
�

p−1(b)
�

= (i1, . . . , in)
	

with the additional requirement that there exists a bijection between M ((i1, . . . , in); j)
and M

�

(i%1
, . . . , i%n

); j
�

for any % (a permutation on the linear order).

Now consider M ((i1, . . . , in) ; j) to be an object in a monoidal category V equipped
with some tensor product ⊗. If we are able to describe the composition of two such
objects, then we will most certainly have described our bicategory V -Poly (or come close
to doing so). Unfortunately, due to time constraints, this last bit of detail (and perhaps
the hardest step in the project) will be left as a future endeavour.
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then %(`) = ` for some ` ∈ L implies that % is the identity in Sn (the symmetric group on a set of n
objects).
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