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Abstract. Ehrenfeucht-Fräıssé games give us a nice tool for proving inexpress-

ibility results in first-order logic over finite structures. Typically, the games

are restricted to a relational setting. But what if we are interested in playing
Ehrenfeucht-Fräıssé games over algebraic structures? We could play the games

on graphs of algebras; however the formulation of algebraic structures as rela-

tional structures is not particularly natural from an algebraic perspective. In
this paper, we look at a reformulation of Ehrenfeucht-Fräıssé games that can be

played over structures where both relations and operations are allowed. In fact,

the games properly generalise the standard formulation, though adjusting the
standard relational structure proofs to this new setting is an intricate process.

1. Preliminaries.

We begin with some standard definitions from first-order (FO) logic.

Definition 1.1. A vocabulary (or signature) σ is a collection of constant symbols
(denoted c1, c2, . . . , cm, . . . ), relation symbols (r1, r2, . . . , rm, . . . ) and function sym-
bols (f1, f2, . . . , fm, . . . ). Each relation and function symbol has an associated arity
k.

A σ-structure (also called a model) A = 〈A; C = {cAi },R = {rA
i },F = {fA

i }〉
consists of a universe A 6= ∅ together with an interpretation of

• each constant symbol ci from σ as a nullary operation;
• each k-ary relation symbol ri from σ as a k-ary relation on A; and
• each k-ary function symbol fi from σ as an operation fA

i : An → A.

If R = ∅, then A is an algebra; if F = ∅ then A is a relational structure. We
denote algebraic signatures by F and relational signatures by R. A structure A is
called finite if its universe A is a finite set. Note that “type” and “language” are often
used as a synonyms for “signature”.

Definition 1.2. We inductively define terms and formulæ of FO logic by rules (1)–(3)
and (4)–(7) respectively.

(1) Variables. Each variable x is a term.
(2) Constants. Each constant symbol c is a term.
(3) Functions. If t1, . . . , tk are terms and f is a k-ary function symbol, then

f(t1, . . . , tk) is a term.
(4) Equality. If t1 and t2 are terms, then t1 ≈ t2 is an atomic formula.
(5) Relations. If t1, . . . , tk are terms and r is a k-ary relation symbol, then

r(t1, . . . , tk) is an atomic formula.
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(6) Binary Connectives and Negation. If ϕ1, ϕ2 are formulæ then ϕ1 ∧
ϕ2, ϕ1 ∨ ϕ2 and ¬ϕ are formulæ.

(7) Quantifiers. If ϕ is a formula, then ∃xϕ and ∀xϕ are formulæ.

Definition 1.3. In a formula or a term, a variable is either free or bound. Intuitively,
a variable is free if it is not quantified. Free variables of a formula or a term are
defined as follows.

• The only free variable of a term x is x; a constant term c does not have free
variables.

• Free variables of t1 ≈ t2 are the free variables of t1 and t2; free variables of
r(t1, . . . , tk) or f(t1, . . . , tn) are the free variables of t1, . . . , tk.

• Negation does not change the list of free variables; the free variables of ϕ1∧ϕ2

and ϕ1 ∨ ϕ2 are the free variables of ϕ1 and ϕ2.
• Free variables of ∃xϕ and ∀xϕ are the free variables of ϕ except x.

Variables that are not free are called bound. A sentence is a formula with out free
variables.

Finally we introduce the notion of satisfaction A |= Φ and some associated nota-
tion.

• If ~x is a tuple of all the free variables of ϕ, we write ϕ(~x).
• If A is a structure of some type, Φ is a sentence in the language of A, and Φ

is true in A, we write A |= Φ.
• Given a set S of FO sentences, we say that two structures, A and B, of the

same type, agree on S if for every sentence Φ of S it is the case that A |= Φ
iff B |= Φ.

• If Ψ(~x) ≡ ∃yϕ(y, ~x), then A |= ϕ(~a) iff A |= ϕ(á,~a) for some á ∈ A.

2. Ehrenfeucht-Fräıssé games

Ehrenfeucht-Fräıssé games are a theoretical tool for evaluating the logical similar-
ities between two mathematical structures. Instead of working with individual finite
structures, one works with an indexed family of pairs of finite structures (of increas-
ing size). The games can be used in this setting to show that properties of finite
structures cannot be defined in first order logic.

As an example, Ehrenfeucht-Fräıssé games can be used to show that a linear order
of length 2k (k being the number of rounds played of the game) is indistinguishable
from one that has length greater than 2k and, in turn, this can be used to show that
the property of having even cardinality is not first order definable over linear orders.
In a similar way, the games can be used to show that connectedness, being a tree,
and being a path are not first order properties of a graph.

Indeed, Ehrenfeucht-Fräıssé games provide a complete methodology for proving
inexpressibility results. In this role, the games have found particular utility at the
finite level, even though finite structures are logically equivalent (in first order logic)
if and only if they are isomorphic. Standard model theoretic techniques for proving
inexpressibility results, such as the Compactness Theorem or the Löwenheim-Skolem
Theorem, are not generally applicable at the finite level.

In the Ehrenfeucht-Fräıssé game, there are two players called Spoiler and Dupli-
cator. The board of the game consists two relational structures (or R-structures)
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A and B. The goal of Spoiler is to show the two structures as distinct; the goal of
Duplicator is to show they are the not different.

The players play a certain number of rounds. Each round consists of the following
rules.

(1) Spoiler picks a structure; either A or B.
(2) Spoiler makes a move by selecting an element of that structure; either a ∈ A

or b ∈ B.
(3) Duplicator responds by selecting an element in the other structure.

After n rounds of an Ehrenfeucht-Fräıssé game, we have moves (a1, . . . , an) and
(b1, . . . , bn). Let c1, . . . , cl be the constant symbols in R; then ~cA denotes (cA1 , . . . , c

A
l )

and likewise for ~cB . Then Duplicator wins the n-round game played on A and B pro-
vided the map that sends each ai into bi and each cjA into cjB is an isomorphism be-
tween the substructures of A and B generated by {a1, . . . , an,~c

A} and {b1, . . . , bn,~cB}
respectively. Intuitively speaking, Duplicator wins the n-round game if he/she can
duplicate any of the n moves that Spoiler makes.
If Duplicator can win the n-round game regardless of how Spoiler plays, we say that
Duplicator has an n-round winning strategy and we write A ≡n B.

3. Some Concepts.

3.1. The graph of an algebra. Given any algebra (or even any partial algebra)
A = 〈A; f1, . . . , fm〉, one can define a relational structure denoted by graph(A) by
replacing each operation fi by a relation ri defined by

ri := {(a1, . . . , ak, ak+1) | fi(a1, . . . , ak) = ak+1}.

Note that the arity of the relation ri is one greater than the arity of the operation it
replaces.

Lemma 3.1. The following are equivalent for a class K of finite algebras (of the
same type):

(1) there is a first order sentence Φ such that K is the class of all finite algebras
satisfying Φ.

(2) there is a first order sentence Ψ such that the class

{graph(A) | A ∈ K}

is the class of all relational structures satisfying Ψ.

Proof. (Sketch) Let A be some algebra in the class K and let f be some operation in
the signature of A.
((2) =⇒ (1)). In Φ, replace (x1, . . . , xn, x0) ∈ graph(f) by f(x1, . . . , xn) ≈ x0.
((1) =⇒ (2)). The atomic formulae (from which sentences are built) are equalities
between terms. Replace these within Ψ by formulae involving the graphs of the
operations. The details use induction, but the idea is straightforward. For example,
if the signature contains a binary operation ∗ then the equation x∗ (y ∗z) = (x∗y)∗z
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becomes

(∃w1, w2, w3)
(
(y, z, w1) ∈ graph(∗) & (x, y, w2) ∈ graph(∗)

& (x,w1, w3) ∈ graph(∗) & (z, w2, w3) ∈ graph(∗)
)
.

Finally, we must take the conjunction of this sentence obtained by the above with a
further statement asserting that the relations corresponding to operations are actually
the graphs of operations. Using the binary ∗ case again, we could use the following:

∀x∀y∃z∀z1 (x, y, z) ∈ graph(∗) & (x, y, z1) ∈ graph⇒ z ≈ z1.

�

4. Playing Ehrenfeucht-Fräıssé games on algebras

Standard presentations of Ehrenfeucht-Fräıssé games (like the one given above)
make a point of restricting to relational structures (no operations, just relations and
constants). But what if we want to play games on algebraic structures? Lemma 3.1
shows that conventional Ehrenfeucht-Fräıssé games can be played on the graphs of
algebras; however the formulation of algebraic structures as relational structures is
not particularly natural from an algebraic perspective. Instead, we propose that the
following game is more natural algebraically.

• Our New Game. Our variant of the Ehrenfeucht-Fräıssé game will have
exactly the same rules as before, but interpreted in the algebra instead of
its graph. Thus, after n rounds, the game will have generated some list
a1, . . . , an and b1, . . . , bn. Duplicator wins provided that the map that sends
each ai into bi and each cjA into cjB extends to an isomorphism from the sub-
algebra of A generated by {a1, . . . , an,~c

A} to the subalgebra of B generated
by {b1, . . . , bn,~cB}.

Observe that the algebraic formulation of the game properly generalises the stan-
dard one in that duplicator wins provided that the bijection created based on the
players’ selection extends to an isomorphism on the subalgebras generated by these
elements. In a relational signature, there is no generating power beyond the selected
elements and the constants, so the new game coincides with the original.

Now recall the definition of quantifier rank, this time interpreted in algebraic sig-
natures (the definition is identical to the relational case):

• If φ is an atomic formula then qr(φ) = 0;
• qr+(φ1 ∨ φ2) = qr+(φ1 & φ2) = max{qr+(φ1), qr+(φ2)};
• qr+(¬φ) = qr+(φ);
• qr+(∀xφ) = qr+(∃xφ) = qr+(φ) + 1.

The following theorem is an algebraic variant of the Ehrenfeucht-Fräıssé Theorem.
We use the notation FO[n] for all FO formulae of algebraic quantifier rank up to n.

Theorem 4.1. The following are equivalent for two finite algebras A and B of the
same type:

(1) A ≡n B; that is, Duplicator has a winning strategy in an n-round play of our
new game.
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(2) A and B agree on FO[n].

Similar to that of the Ehrenfeucht-Fräıssé Theorem, Theorem 4.1 gives rise to a
general methodology for proving inexpressibility results, which is complete for uni-
formly locally finite classes of finite algebras.

Corollary 4.2. A property P of is not expressible in FO, if for every n ∈ N, there
exist two finite algebras An and Bn, such that:

• An ≡n Bn.
• An has property P, and B does not.

Compared to the standard formulations of Theorem 4.1 and Corollary 4.2, the
proofs involve some extra intricacies. Most of the next section is devoted to handling
these complications. We finish off by giving the proofs of the above results; which
turn out to be relatively straightforward.

5. Proof Of Theorem 4.1 and Corollary 4.2

The notion of quantifier rank has an extra complication in the algebraic setting:
even up to logical equivalence there may be infinitely many different quantifier rank 0
sentences. For example, if the signature contains a constant c and a binary operation
∗, then each of the following atomic sentences are different: c ≈ c ∗ c, c ≈ c ∗ (c ∗ c),
c ≈ c ∗ (c ∗ (c ∗ c)), . . . . However, when playing Ehrenfeucht-Fräıssé games on finite
algebras, there may occur some collapse of these sentences, and we utilise this in the
proofs.

5.1. Terms and a Technical Lemma. A term in some algebraic signature F is a
well formed expression built from combining variables using the operation symbols
in F . (Recall that we consider constants as nullary operations. This in a signature
{·, c, d} of type 〈2, 0, 0〉, the expressions c and (c · (d · c)) · c are examples of terms in
which there are no variables used.) We use notations such as t(x1, . . . , xn) to denote
terms whose variables are amongst x1, . . . , xn.

Define the height of a term as follows: variables are of height 0. If f is a fundamental
operation of arity n and the maximum height amongst some set of terms t1, . . . , tn
is k, then f(t1, . . . , tn) is of height k + 1. We interpret this as defining the height of
nullaries to be 1.

Let A be an algebraic structure of some finite type. Each term t(x1, . . . , xn) in
the signature of A induces a function from An into A: simply evaluate t at a given
tuple. We use tA(x1, . . . , xn) to denote the function on A corresponding to t (recall
that t itself is just an expression). A subtlety is that the variables x1, . . . , xn do not
have to all appear in the expression t (though all variables in t must be amongst
x1, . . . , xn). Thus the arity n of the function tA(x1, . . . , xn) depends on the variables
we have specified.

Note that if s ≈ t is an equation between two terms s, t whose variables are amongst
x1, . . . , xn, then A |= s ≈ t if and only if sA(x1, . . . , xn) and tA(x1, . . . , xn) are
identical functions.

The following lemmas are phrased in some fixed finite algebraic signature F .
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Lemma 5.1. Fix a finite algebra A. Let X = {x1, . . . , xn} be a finite set of vari-
ables, and let T (X) denote the set of all terms whose variables are amongst X.
Define an equivalence relation ≡A on T (X) by s(x1, . . . , xn) ≡A t(x1, . . . , xn) if
sA(x1, . . . , xn) = tA(x1, . . . , xn). Then ≡A is a congruence and T (X)/≡A has at
most |A||A|n equivalence classes.

Proof. First, ≡A has at most |A||A|n classes because this is the number of functions
from An into A (and not all of these need come from terms). Now for the congruence
claim. Let f ∈ F be k-ary and consider terms s1, . . . , sk and t1, . . . , tk from T (X) with
si ≡A ti for i = 1, . . . , k. Then for each i we have sAi = tAi , so that fA(sA1 , . . . , s

A
k ) =

fA(tA1 , . . . , t
A
k ), which implies that f(s1, . . . , sk) ≡A f(t1, . . . , tk). That is, ≡A is a

congruence. �

The following lemma is an algebraic variant of Lemma 3.13 of Libkin [2].

Lemma 5.2. Let k,m, n be natural numbers.

(1) Every atomic subformula of a rank k formula in m free variables x0, . . . , xm−1

involves at most m+ k variables.
(2) Up to logical equivalence there are only finitely many distinct rank k formulæ

in the m free variables x0, . . . , xm−1 whose terms are of height at most n.

Proof. Both statements are proved by induction over k (the number m varies: for
each k we ask the statement be true of any m). The first is trivial in the k = 0 case.
Assume now that for any m, an atomic subformula of a rank k formula in m free
variables x0, . . . , xm−1 involves at most m+k variables. If Φ(x0, . . . , xm−1) is of rank
k + 1, it is a Boolean combination of formulæ of the form ∃xmΨ(x0, . . . , xm−1, xm),
where Ψ(x0, . . . , xm−1, xm) is of rank k. All atomic subformulæ of Φ appear in these
rank k subformulæ too, and by induction these atomic subformulæ involve at most
(m+ 1) + k = m+ (k + 1) variables, as required.

Now we prove the second statement. The rank 0 case follows because there are
only finitely many terms of height at most n in the given set of m variables. Now
assume the lemma is true for rank k sentences (and for all m), and consider a formula
Φ(x0, . . . , xm−1) of rank k + 1. Now Φ(x0, . . . , xm−1) is a Boolean combination of
formulæ of the form ∃xmΨ(x0, . . . , xm−1, xm), where Ψ(x0, . . . , xm−1, xm) is of rank
k, for which the maximum height of any term in Ψ(x0, . . . , xm−1, xm) is of height at
most n. By the induction hypothesis, there are only finitely many formulæ of the
form Ψ(x0, . . . , xm−1, xm), up to logical equivalence. Hence, up to logical equivalence
there are only finitely many Boolean combinations of such formulæ, which establishes
the rank k + 1 case of the lemma (for any m). �

The next lemma is usually called Birkhoff’s Finite Basis Theorem; see Theorem
4.2 of Burris and Sankappanavar [1] for example.

Birkhoff’s Finite Basis Theorem 5.3. Let A be a finite algebra. For any number
k, there is a finite set equations Σ = {si(x, x1, . . . , xk) ≈ ti(x, x1, . . . , xk) | i =
1, 2, . . . , `} such that A satisfies

∀x0∀x1 . . . ∀xk si(x, x1, . . . , xk) ≈ ti(x, x1, . . . , xk), for each i,

and for every term t(x, x1, . . . , xk) there is an i ≤ ` such that t(x, x1, . . . , xk) ≈
ti(x, x1, . . . , xk) follows by applications of equations from Σ.
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Proof. Let the u1, . . . , ur be a transversal of the ≡A-classes of the term algebra
T (x, x1, . . . , xk). We could further assume that each ui is minimal height in its ≡A-
class, though this will not be used.

The set Σ will consist of the following.

(1) Include x ≈ x1 if |A| = 1.
(2) For each variable y ∈ {x, x1, . . . , xk} and u ∈ {u1, . . . , ur} with y ≡A u,

include y ≈ u.
(3) For each fundamental operation f (of arity n, say) and elements ui1 , . . . , uin of
{u1, . . . , ur}, let u ∈ {u1, . . . , ur} be such that f(ui1 , . . . , uin) ≡A u. Include
the equation f(ui1 , . . . , uin

) ≈ u. (In the case that f is nullary, this definition
will include any equalities between constants that hold in A.)

We prove that every term t reduces (by applications of identities in Σ) to the right
hand side of one of the equations in Σ by induction on the height k of a term t. If
k = 0, we are done since t ∈ X ⊆ Σ (by (2)).
Now assume that t is a term of height k + 1; that is, t is of the form f(s1, . . . , sn)
for some fundamental operation f of arity n, where si have height at most k. By the
induction hypothesis we have Σ ` si ≈ uj (where i ≤ n and j ≤ r). Thus, after k
applications of replacement, we have Σ ` t ≈ f(u1, . . . , un). Then by (3), there exists
u ∈ {u1, . . . , ur} with f(u1, . . . , un) ≈ u ∈ Σ. Hence, using applications of equations
from Σ we obtain t ≈ f(u1, . . . , un) ≈ u as required. �

Definition 5.4. Let A be a finite algebra and a ∈ A. Define the rank k type of
the element a, denoted tpk(A, a), to be the set of all FO-formulæ ϕ(x) of rank k for
which A |= ϕ(a).

Lemma 5.5. Let A be a finite algebra and a ∈ A. Then the rank k type tpk(A, a) of
a is logically equivalent to a finite subset of tpk(A, a). The same is true for the rank
type tpk(A).

Proof. We prove only the first statement, as the second statement is proved by a
slight simplification of the first argument. We use the set Σ of equations identified in
Birkhoff’s Finite Basis Theorem. The set tpk(A, a) contains the formulæ

∀x1 . . . ∀xk si(x, x1, . . . , xk) ≈ ti(x, x1, . . . , xk),

for each i = 1, . . . , `. Now let Ψ(x) be a formula in tpk(A, a), and let

s(x, x1, . . . , xm) ≈ t(x, x1, . . . , xm)

be an atomic subformula of Ψ(x). Now, by the first statement in Lemma 5.2, we have
that s(x, x1, . . . , xm) ≈ t(x, x1, . . . , xm) involves at most k+1 distinct variables. Hence
Birkhoff’s Finite Basis Theorem shows that there are i, j ≤ ` such that the formula
s(x, x1, . . . , xm) ≈ t(x, x1, . . . , xm) is equivalent to ti(xi0 , . . . , xik

) ≈ tj(xi0 , . . . , xik
),

for some subset {xi0 , . . . , xik
} ⊆ {x, x1, . . . , xm}. Thus in the presence of Σ, the

formula Ψ(x) is equivalent to one in which all terms have height at most the maximum
height of the terms t1, . . . , t` (which in fact will be at most |A||A|k+1

). Thus, by the
second part of Lemma 5.2, the set tpk(A, a) is logically equivalent to the finite subset
consisting of Σ along with all members of tpk(A, a) whose terms are of height at most
n. �
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The following is similar to Theorem 3.15 of Libkin [2], but adjusted to the algebraic
setting.

Lemma 5.6. For any finite algebra A and element a ∈ A there is a rank k formula
αk(x) such that A |= αk(a) and any similar algebra B with b ∈ B satisfying αk(b)
has tpk(B, b) = tpk(A, a).

Proof. The rank k formula αk(x) is just the conjunction of the finite subset of
tpk(A, a) guaranteed by Lemma 5.5. Now assume that B |= αk(b). As αk(x) is
logically equivalent to tpk(A, a), it follows that each formula Φ(x) ∈ tpk(A, a) has
B |= Φ(b). Now assume that Φ(x) is a rank k formula in tpk(B, b); we show that
Φ(x) ∈ tpk(A, a) as well. Indeed, otherwise A |= ¬Φ(a), so that ¬Φ(x) ∈ tpk(A, a).
But then we would have B |= ¬Φ(b) & Φ(b), a contradiction. �

We shall prove the equivalence of (1) and (2) in the Theorem 4.1, as well as a new
condition, the back-and-forth equivalence.

Definition 5.7. We inductively define the back-and-forth relations 'k on finite F-
structures A and B as follows.

• A '0 B iff A ≡0 B; that is, A and B satisfy the same atomic sentences.
• A 'k+1 B iff the following two conditions hold:

forth: for every a ∈ A, there exists b ∈ B such that (A, a) 'k (B, b).
back: for every b ∈ B, there exists a ∈ A such that (A, a) 'k (B, b).

We now prove the following extension of Theorem 4.1.

Theorem 5.8. Let A and B be two finite F-structures. Then the following are
equivalent:

(1) A and B agree on FO[k];
(2) A ≡k B;
(3) A 'k B.

Proof. By induction on k. The k = 0 case is obvious. First we prove the equivalence
of (2) and (3) followed by the equivalence of (1) and (3).
((3) =⇒ (2)). Assume that A 'k+1 B; that is the conditions forth and back above
hold. We must show that A ≡k+1 B. Without loss of generality assume Spoiler plays
a ∈ A as his first move. Then by forth, we can find b ∈ B with (A, a) 'k (B, b).
Thus, by the hypothesis, we have (A, a) ≡k (B, b); that is, Duplicator can continue
to play for another k moves, and thus wins the k + 1-round game. Hence A ≡k+1 B
as required. The other direction is similar.

((1) =⇒ (3)). Assume A and B agree on FO[k + 1]; that is, for every sentence
Ψ of qr+(Ψ) = k + 1 we have A |= Ψ iff B |= Ψ. We show that A 'k+1 B. We
shall prove the forth case only (the back case is identical). Choose a ∈ A. Then,
by Lemma 5.6, its rank-k type tpk(A, a) is logically equivalent to the rank-k formula
αk(x) and so A |= αk(a). Thus, A |= ∃xαk(x) and since αk(x) is a formula of
quantifier rank k; this is a sentence of quantifier rank k + 1. Hence B |= ∃xαk(x) by
assumption. Now let b be the witness for the existential quantifier, then by Lemma 5.6
we have tpk(B, b) = tpk(A, a). Hence for every sentence Φ of qr+(Φ) = k+ 1 we have
(A, a) |= Φ iff (B, b) |= Φ; that is, (A, a) and (B, b) agree on FO[k]. Then the
hypothesis implies (A, a) 'k (B, b); and by definition this is A 'k+1 B.
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((3) =⇒ (1)). In the other direction, we assume A 'k+1 B and we show A
and B agree on FO[k + 1]. Since every FO[k + 1] sentence is a Boolean combination
(that is, constructed using connectives ∧, ∨ and ¬ only) of ∃xϕ(x), it suffices to
prove the result for sentences of the form ∃xϕ(x). Assume that A |= ∃xϕ(x). Thus,
A |= ϕ(a) for some a ∈ A. By forth, we can find b ∈ B such that (A, a) 'k (B, b).
Hence (A, a) and (B, b) agree on FO[k] by the hypothesis. Thus B |= ϕ(b) and so
B |= ∃xϕ(x). The converse (B |= ∃xϕ(x) =⇒ A |= ∃xϕ(x)) is essentially identical
which completes the proof. �

Finally, we sketch a proof that Corollary 4.2 is complete for properties defining
uniformly locally finite classes of finite algebras (that is, classes of finite algebras for
which the size of n-generated subalgebras is bounded by some positive integer). In
the following theorem, it is implicit that all algebras are of the same finite signature.

Theorem 5.9. Let P denote a uniformly locally finite class of finite algebras. Then P
is definable amongst finite algebras by a first order sentence iff there exists a number k
such that for every two finite algebras A and B, if A ∈ P and A ≡k B, then B ∈ P.

Proof. Let A and B be finite algebras and assume that P is definable by a FO sentence
Φ. Let k := qr+(Φ). If A ∈ P, then A |= Φ, and hence for B with A ≡k B we have
B |= Φ. Thus B ∈ P.

The converse direction requires a slightly more detailed version of Lemma 5.5 and
we do not give full details. Assume that A ∈ P and A ≡k B imply B ∈ P. So in
particular, any two finite algebras with the same rank-k type agree on membership
in P. Now, as P is uniformly locally finite and the signature is finite, there are only
finitely many k-generated subalgebras of members of P, up to isomorphism. This
enables one to show that the distinct rank k types of members of P are finite in
number: essentially, the equations Σ guaranteed by Birkhoff’s Finite Basis Theorem
can be chosen uniformly across all A ∈ P (basically, the equational class generated
by P will be locally finite: whence the k-generated free algebra will be finite). It is
these equations (in the proof of Lemma 5.5) that guarantee the equivalence of tp(A)
with some finite subset; moreover, the size of this subset depends only on k and the
size of the equations in Σ.

Let Φ denote the disjunction of all the rank k-types of algebras in P. Certainly
every model of P satisfies Φ. But also, a model B of Φ shares the same rank k type
as some algebra A ∈ P; whence such a B is in P. Hence Φ defines P amongst finite
algebras. �
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