Differentiability of quasiconformal reflections

Terence Harris
Supervised by Michael Cowling
University of New South Wales
Introduction

Let \(h \) be an increasing homeomorphism of the real axis onto itself, for which there exists a constant \(M \) such that

\[
M^{-1} \leq \frac{h(x + t) - h(x)}{h(x) - h(x - t)} \leq M,
\]

for all real \(x \) and \(t > 0 \). The Beurling-Ahlfors extension of \(h \) to the upper half plane is given by \(\phi(x, y) \), where

\[
\begin{align*}
\text{Re}(\phi) &= \frac{1}{2} \int_0^1 [h(x + ty) + h(x - ty)] \, dt \\
\text{Im}(\phi) &= \frac{r}{2} \int_0^1 [h(x + ty) - h(x - ty)] \, dt.
\end{align*}
\]

(1)

This is shown in [4] to be quasiconformal for any fixed \(r > 0 \). Let \(L \) be a Jordan curve through infinity which divides the plane into the regions \(\Omega \) and \(\Omega^* \). A reflection over \(L \) is a map which swaps \(\Omega \), \(\Omega^* \) and keeps points on \(L \) fixed. Using (1) Ahlfors proved the following lemma in [1, 2]:

Lemma 1. If \(L \) permits a \(K \)-quasiconformal reflection, then it also permits a \(C(K) \) quasiconformal reflection which changes Euclidean lengths at most by a factor \(C(K) \).

It is additionally claimed in [2, p. 48] that the reflection is differentiable. Differentiability away from \(L \) follows directly from the proof of the lemma, but differentiability on \(L \) does not. The aim of this report is to show that the parameter choice \(r = 2 \) and some extra assumptions about \(L \) are required to be sure the reflection is differentiable on \(L \).

The matrix of partial derivatives of a function \(g : \mathbb{C} \to \mathbb{C} \) at \(z = x + iy \) will be denoted \(D_z(g) \) or \(D_{(x,y)}(g) \). The symbols \(f, f^* \) will be used throughout to denote conformal maps from the upper and lower half plane to \(\Omega \) and \(\Omega^* \). Both maps extend to homeomorphisms of the boundary by Carathodory’s Theorem (on conformal mapping). The symbol \(\omega \) will be used to denote reflections over \(L \).

Reflections over curves

Example 1. A reflection cannot be differentiable over sharp corners

Let \(\Omega^* \) be the open first quadrant, \(\Omega \) be the interior of its complement, and let \(\omega \) be a reflection over \(L = \partial \Omega \). By definition \(\omega \) is differentiable at the origin if

\[
\lim_{h \to 0} \frac{\|\omega(h) - \omega(0) - D_0(\omega) \cdot h\|}{\|h\|} = 0.
\]

(2)

Taking limits along the positive real and positive imaginary axis shows that

\[
D_0(\omega) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
\]

Also, \(\omega \) fixes the origin and so (2) is equivalent to

\[
\lim_{h \to 0} \frac{\|\omega(h) - h\|}{\|h\|} = 0.
\]

(3)
If $h \in \Omega$ is in the lower left quadrant, the origin is closer to h than any point of Ω^\star. As $\omega(h) \in \Omega^\star$, it follows that

$$\|\omega(h) - h\| \geq \|h\|.$$

Taking $h \to 0$ in the lower left quadrant then contradicts (3), which proves ω is not differentiable at 0. For this to show that differentiability of the reflection in Lemma 1 cannot be guaranteed, it remains to show that L permits a quasiconformal reflection. This follows from Theorem 2 (Appendix) with the constant $C = 1$.

Example 2. Formula for a reflection over a sharp corner

As in Example 1, let Ω^\star be the open first quadrant, Ω the open part of its complement. The conformal maps f, f^\star from the upper and lower half planes to Ω, Ω^\star are

$$f(z) = iz^{3/2} \quad f^{-1}(z) = (-iz)^{2/3}$$
$$f^\star(z) = iz^{1/2} \quad f^{\star-1}(z) = -z^2,$$

where the branch cut for $z^{2/3}$ is taken on the positive real axis, and the branch cut for \sqrt{z} is taken on the negative real axis but with $\sqrt{re^{i\pi}} := re^{-i\pi/2}$. The boundary function is $h(x) = (f^{\star-1} \circ f)(x) = x^3$. Its Beurling-Ahlfors extension is

$$\phi(x, y) = x^3 + xy^2 + \frac{r^i}{2} \left(3x^2y + \frac{y^3}{2} \right) = \rho^3 \left[\cos \theta + \frac{r^i}{16} (9 \sin \theta + 5 \sin 3\theta) \right],$$

where $x = \rho \cos \theta$, $y = \rho \sin \theta$. Hence

$$j \circ \phi \circ f^{-1} = \rho^2 \left[\cos \left(\frac{2\theta - \pi}{3} \right) + \frac{r^i}{16} \left(5 \sin 2\theta - 9 \sin \left(\frac{2\theta - \pi}{3} \right) \right) \right].$$

And in Ω, $\omega = f^\star \circ j \circ \phi \circ f^{-1}$, so

$$\omega \left(\rho e^{i\theta} \right) = i\rho \sqrt{\cos \left(\frac{2\theta - \pi}{3} \right) + \frac{r^i}{16} \left(5 \sin 2\theta - 9 \sin \left(\frac{2\theta - \pi}{3} \right) \right)},$$

where $\theta \in \left[\frac{\pi}{2}, 2\pi \right]$ and $\sqrt{\rho e^{-i\pi/2}} := \sqrt{\rho} \cdot e^{-i\pi/2}$. The behaviour of ω is shown in Figure 1.

Example 3. A reflection over the right branch of a hyperbola

Let Ω be the region to the left of the right branch of the hyperbola $x^2 - y^2 = a^2$, Ω^\star the region to the right. From [3, p. 97] the conformal maps are

$$f(z) = \begin{cases}
 a \sqrt{\frac{1}{2} \left[iz^3 + 3iz + 2 \right]} & \text{if } \text{Re}(z) \geq 0, \\
 a \sqrt{\frac{1}{2} \left[-iz^3 - 3iz + 2 \right]} & \text{if } \text{Re}(z) \leq 0
\end{cases}$$
Figure 1: The image of three quarters of a square under ω. The code used to generate this figure is given in the Appendix.
and

\[f^*(z) = \sqrt{iz + a^2}, \quad (f^*)^{-1}(z) = i(a^2 - z^2). \]

The boundary function is

\[h(x) = (f^*)^{-1} \circ f(x) = \frac{a^2}{2}(x^3 + 3x), \]

for all \(x \in \mathbb{R} \). With \(r = 2 \) the Beurling-Ahlfors extension of \(h \) is

\[\phi(x + iy) = \frac{a^2}{2} \left[x(x^2 + y^2 + 3) + \frac{iy}{2}(6x^2 + y^2 + 6) \right]. \]

The image of \(\Omega \) under \(\omega = f^* \circ j \circ \phi \circ f^{-1} \) is shown in Figure 2. For points \((x, y)\) on the hyperbola, the derivative of the reflection tends to

\[D_{(x,y)}(\omega) = \frac{1}{x^2 + y^2} \begin{pmatrix} y^2 - x^2 & 2xy \\ 2xy & x^2 - y^2 \end{pmatrix}, \tag{4} \]

which is involutary \((D^2 = I)\). The tangent to the hyperbola at \((x, y)\) has direction \((y, x)\), which is an eigenvector of \(D \) with eigenvalue 1. The function \(\omega \) thus locally reflects points over the tangent to the curve; this can be seen in Figure 2. The formula (4) will later be evident and does not need to be shown directly.
Theorem 1. Let z_0 be a point on L, let the partial derivatives of f extend continuously to a real neighbourhood of $x_0 = f^{-1}(z_0)$, and likewise for f^*. If $f_x(x_0, 0) \neq 0$, then ω is C^1 at z_0 only if $r = 2$.

Proof. In Ω, the reflection ω is the composition of four functions $f^* \circ j \circ \phi \circ f^{-1}$. The proof will extend the partial derivatives of each of these to their boundaries, and then extend the partial derivatives of ω to L via the chain rule.

By assumption f_x is continuous inside the rectangle R with vertices $x_0 \pm \epsilon, x_0 + i \pm \epsilon$ for some $\epsilon > 0$. Applying Theorem 3 (Appendix) to the real and imaginary parts of f, with

$$g(x, y) = C = \max_R |f_x(x, y)|$$

results in

$$f'(x_0) := \lim_{h \to 0} \frac{f(x_0 + h, 0) - f(x_0, 0)}{h} = \lim_{h \to 0} \lim_{y \to 0} \frac{f(x_0 + h, y) - f(x_0, y)}{h} = \lim_{h \to 0} \lim_{y \to 0} \int_0^1 f_x(x_0 + ht, y) \, dt = f_x(x_0, 0),$$

with this holding similarly for f^*. Applying the chain rule to $h = f \circ f^{-1}$ gives

$$f'(x_0) = (f^*)'(h(x_0)) \cdot h'(x_0),$$

(5)

and so $(f^*)'(h(x_0)) \neq 0$ by the assumption $f'(x_0) \neq 0$. The limiting matrix $D_{x_0}(f) := \lim_{z \to x_0} D_z(f)$ has determinant $|f'(x_0)|^2 \neq 0$, so by the Inverse Function Theorem

$$D_{z_0}(f^{-1}) := \lim_{z \to z_0} D_z(f^{-1}) = (D_{x_0}(f))^{-1},$$

where $z \to z_0$ inside Ω. This ensures that the partial derivatives of f^{-1} extend continuously at z_0.

If ϕ is the extension of h to the upper half plane then from [2, p. 43] its partial derivatives are

$$\text{Re}(\phi)_x = \frac{1}{2y} (h(x + y) - h(x - y)),
\text{Re}(\phi)_y = -\frac{1}{2y^2} \int_{x-y}^{x+y} h \, dt + \frac{1}{2y} (h(x + y) + h(x - y)),
\text{Im}(\phi)_x = \frac{r}{2y} [h(x + y) - 2h(x) + h(x - y)],
\text{Im}(\phi)_y = \frac{r}{2} \left[-\frac{1}{y^2} \left(\int_x^{x+y} h \, dt - \int_x^{x-y} h \, dt \right) + \frac{1}{y} (h(x + y) - h(x - y)) \right].$$

Applying L’Hôpital’s rule gives the limiting matrix of partial derivatives

$$D_{(x_0, y)}(j \circ \phi) \to \begin{pmatrix} h'(x_0) & 0 \\ 0 & \frac{-r}{2} h'(x_0) \end{pmatrix} \text{ as } y \to 0^+.$$
where \(j \) is the conjugate map \(z \to \bar{z} \). Denote the real and imaginary parts of \(f^{-1} \) and \(f^* \) by \(u, v \) and \(u^*, v^* \) respectively. Then as \(z \to z_0 \) inside \(\Omega \),

\[
\begin{align*}
 f^{-1}(z) & \to f^{-1}(z_0) = x_0, \\
 j \circ \phi \circ f^{-1}(z) & \to h(x_0).
\end{align*}
\]

Thus

\[
D_z(f^{-1}) \to \begin{pmatrix} u_x(z_0) & u_y(z_0) \\ v_x(z_0) & v_y(z_0) \end{pmatrix},
\]

\[
D_{f^{-1}(z)}(j \circ \phi) \to \begin{pmatrix} h'(x_0) & 0 \\ 0 & -\frac{1}{\bar{z}} h'(x_0) \end{pmatrix},
\]

\[
D_{j \circ \phi \circ f^{-1}(z)}(f^*) \to \begin{pmatrix} u_x^*(h(x_0)) & u_y^*(h(x_0)) \\ v_x^*(h(x_0)) & v_y^*(h(x_0)) \end{pmatrix}.
\]

as \(z \to z_0 \) inside \(\Omega \). The reflection formula is

\[
\omega := \begin{cases} f^* \circ j \circ \phi \circ f^{-1} & \text{in } \Omega \cup \mathbb{L} \\ f \circ \phi^{-1} \circ j \circ f^{-1} & \text{in } \Omega^* \cup \mathbb{L}. \end{cases}
\]

Applying the chain rule at \(z \in \Omega \) yields

\[
D_z(\omega) = D_{j \circ \phi \circ f^{-1}(z)}(f^*) \cdot D_{f^{-1}(z)}(j \circ \phi) \cdot D_z(f^{-1}),
\]

\[
\to \begin{pmatrix} u_x^*(h(x_0)) & u_y^*(h(x_0)) \\ v_x^*(h(x_0)) & v_y^*(h(x_0)) \end{pmatrix} \begin{pmatrix} h'(x_0) & 0 \\ 0 & -\frac{1}{\bar{z}} h'(x_0) \end{pmatrix} \begin{pmatrix} u_x(z_0) & u_y(z_0) \\ v_x(z_0) & v_y(z_0) \end{pmatrix},
\]

which when squared becomes

\[
D_{z_0}(\omega)^2 = (u_x^2 + u_y^2) \cdot (u_x^2 + u_y^2) : h'(x_0)^2 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
\]

Differentiating \(f^{-1} \circ f^* \circ h(x) = x \) at \(x = x_0 \) gives

\[
[u_x - iu_y] \cdot [u_x^* - iu_y^*] \cdot h'(x_0) = 1.
\]

Equating moduli and squaring results in

\[
D_{z_0}(\omega)^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},
\]

that is, the limiting derivative matrix is its own inverse. By the Inverse Function Theorem, and the fact that \(\omega \) is its own inverse,

\[
D_{\omega(z)}(\omega) = (D_z(\omega))^{-1},
\]

7
for z not on L. As ω fixes points on L, combining (10) and (11) shows that $D_z(\omega) \to D_{z_0}(\omega)$ as $z \to z_0$ from inside Ω or Ω^*. The formula $\det(AB) = \det(A) \det(B)$ combined with (7) implies that $r = 2$ is the only choice that makes $D_{z_0}(\omega)$ involutary, which means ω is not C^1 at z_0 for $r \neq 2$. We now show that $D_z(\omega) \to D_{z_0}(\omega)$ also holds as $z \to z_0$ along L. The form of (8) means $D_{z_0}(\omega)$ must reflect points over some axis. By (5) we know that $f''(h(x_0)) \neq 0$, so the tangent to L at z_0 has direction $f''(h(x_0)) = \left(\frac{u^*_x}{u^*_y}\right)' = \left(\frac{u^*_x}{-u^*_y}\right)$. Multiplication gives

$$D_{z_0}(\omega) \cdot \begin{pmatrix} u^*_x \\ -u^*_y \end{pmatrix} = h'(x_0) \cdot \begin{pmatrix} u^*_x \cdot u_x + u^*_y \cdot u_y \\ u^*_x \cdot u_y - u^*_y \cdot u_x \\ -u^*_x \cdot u_x - u^*_y \cdot u_y \end{pmatrix} \cdot \begin{pmatrix} u^*_x \\ -u^*_y \end{pmatrix},$$

$$= h'(x_0) \cdot (u^*_x + u^*_y) \cdot \begin{pmatrix} u_x \\ u_y \end{pmatrix}.$$

Rearranging (9) gives

$$h'(x_0)(u_x - iu_y) = \frac{1}{u^*_x - iu^*_y}.$$

Equating real and imaginary parts of this results in

$$h'(x_0) \cdot u_x \cdot (u^*_x + u^*_y) = u^*_x, \quad h'(x_0) \cdot u_y \cdot (u^*_x + u^*_y) = -u^*_y,$$

and so

$$D_{z_0}(\omega) \cdot \begin{pmatrix} u^*_x \\ -u^*_y \end{pmatrix} = \begin{pmatrix} u^*_x \\ -u^*_y \end{pmatrix},$$

which means the axis of reflection is the tangent to L at z_0. As L has a continuously turning tangent at z_0, this proves $D_z(\omega) \to D_{z_0}(\omega)$ as $z \to z_0$ along L, and thus $D_{z_0}(\omega)$ defines a continuous extension of the partial derivatives of ω to L. It remains to show the extension matches the usual definition of partial derivatives, for example

$$\lim_{h \to 0} \frac{\omega(z_0 + h) - \omega(z_0)}{h} - \omega_x(z_0) = 0. \quad (12)$$

where h is real. Assume without loss of generality that L is not parallel to the x-axis at z_0. Then for h small enough, $z_0 + h$ will not lie on L. Eq.(12) now follows by L'Hôpital's rule; $\omega_y(z_0)$ may be verified in the same way. As the partial derivatives of ω exist and are continuous in neighbourhood of z_0, ω is C^1 at z_0.

Corollary 1. If L is Dini-smooth and $r = 2$, then ω is C^1 everywhere.

Proof. If L is Dini-smooth and $r = 2$, the assumptions of Theorem 1 all hold by Theorem 4 (Appendix).

Every C^1 curve with Hölder continuous derivative is Dini-smooth, so a less general version of this is:

Corollary 2. If $L \in C^{1, \alpha}$ for some $0 < \alpha \leq 1$, then ω is C^1 everywhere for $r = 2$.

8
Acknowledgements
I would like to thank Prof. Michael Cowling for his time and effort spent supervising this project, and AMSI for funding and for organising the Big Day In.

Appendix

Theorem 2. A Jordan curve L through ∞ permits a quasiconformal reflection if and only if there exists a constant C such that
$$|\zeta_1 - \zeta_2| \leq C|\zeta_1 - \zeta_3|,$$
for any three points $\zeta_1, \zeta_2, \zeta_3$ on L which follow each other in this order.

Theorem 3. Let f_n be a sequence of real-valued measurable functions on a measure space S. Suppose that $f_n \to f$ pointwise and $f_n(x) \leq g(x)$ for all $x \in S$ and for all n, for some integrable function g. Then f is integrable and
$$\lim_{n \to \infty} \int_S f_n(x) d\mu = \int_S f(x) d\mu = \int_S \lim_{n \to \infty} f_n(x) d\mu.$$

Definition 1. Let $\gamma : [0,1] \to \mathbb{C}$ be a continuous. The modulus of continuity of γ is
$$\omega(t) = \sup_{|x-y| \leq t} |\gamma(x) - \gamma(y)|.$$
Then γ is called Dini-continuous if
$$\int_0^1 \frac{\omega(t)}{t} \, dt < \infty.$$
A C^1 curve with regular parametrisation γ is Dini-smooth if γ' is Dini-continuous.

Theorem 4. Let f map \mathbb{D} conformally onto the inner domain of the Dini-smooth Jordan curve C. Then f' has a continuous extension to $\overline{\mathbb{D}}$ and
$$\frac{f(\zeta) - f(z)}{\zeta - z} \to f'(z) \neq 0 \quad \text{for} \quad \zeta \to z, \zeta, z \in \mathbb{D},$$
$$|f'(z_1) - f'(z_2)| \leq C \omega^*(\delta) \quad \text{for} \quad z_1, z_2 \in \overline{\mathbb{D}}, |z_1 - z_2| \leq \delta.$$

Theorem 4 and the definition of Dini-smooth are from [5, p. 48]. Theorem 2 is Ahlfors’ three point condition from [1]. The letter D in Theorem 4 denotes the unit disc.

Mathematica code used to generate Figure 1

```math
a = 2;
arg2[z_] := Mod[Arg[z], -2*Pi, 2*Pi] / 3
ct2[z_] := Abs[z]^(2/3) * Exp[I*2*arg2[z]/3]
finv[z_] := ct2[-I*z]
fstar[z_] := I*Sqrt[z]
jphi[z_] := Abs[z]^2*Re[z] - a*I/2*(3*Re[z]^2*Im[z] + 1/2*Im[z]^3)
```
Mathematica code used to generate Figure 2

\[
\begin{align*}
\omega[z] & := N[fstar[jphi[finv[z]]]] \\
\text{omega2}[z] & := N[fstar[jphi[finv2[z]]]] \\
\end{align*}
\]

\[
\text{domain} = \text{ParametricPlot}[\]
\begin{align*}
&\text{Evaluate@Through[{Re, Im}[x + I*y]]} \text{Boole[} \\
&\quad x < 0 \text{ || } y < 0, \{x, -1, 1\}, \{y, -1, 1\}, \text{AspectRatio} \to 1, \\
&\quad \text{PlotRange} \to \text{All}, \text{PlotPoints} \to 80, \text{PlotStyle} \to \text{Red}, \\
&\quad \text{BoundaryStyle} \to \text{None}; \\
&\text{domain} = \text{ParametricPlot}[\]
\end{align*}
\]

\[
\begin{align*}
\text{image} & = \text{ParametricPlot}[\]
\end{align*}
\]

\[
\begin{align*}
&\text{image} = \text{ParametricPlot}[\]
\end{align*}
\]

\[
\begin{align*}
\text{upperimage} & = \text{ParametricPlot}[\]
\end{align*}
\]

\[
\begin{align*}
\text{lowerimage} & = \text{ParametricPlot}[\]
\end{align*}
\]

\[
\begin{align*}
\text{domain} & = \text{ParametricPlot}[\]
\end{align*}
\]
References

