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1 Introduction

As an older branch of statistics with a soaring list of advancements in the 21st century, Bayesian
statistical methods have been widely used in many fields. The ability to provide clear, coherent
and direct inferences for unknown parameters by making use of all of the available data of Bayesian
methods is highly praised by many practitioners. Bayesian statistics also offer several major ad-
vantages such as incorporating prior knowledge into the analysis, quantifying uncertainties in the
model and the parameter values, as well as allowing great flexibility in modelling which is incredi-
bly useful in complex models (Kruschke 2015). However, applying Bayesian methods to analysing
data can be quite challenging for health practitioners. Due to the development of application tools
implementing Bayesian methods, it is now feasible for non-statisticians to learn and make use of
the numerous advantages Bayesian modelling has to offer (Depaoli, Clifton, and Cobb 2016). This
research looks at two particular software packages, JAGS and Stan, developed specifically for the
analysis of Bayesian hierarchical models and compares their performance on two datasets. Through
this report, readers will be introduced to the concept of Bayesian inference, Markov Chain Monte
Carlo methods as well as the use of two software packages that implement these methods.

2 Bayesian inference

2.1 Mathematical framework

The mathematical foundation of Bayesian statistics is a theorem invented by Thomas Bayes, an
English mathematician and a Presbyterian minister in the 18th century (McGrayne 2011). Bayes’
theorem shows the relationship between the marginal probabilities and the conditional probabilities
when data is taken into account (Kruschke 2015). The theorem underlies all the principles of
inferences and decisions in Bayesian statistics. Bayes’ theorem is expressed in equation (1).

p(θ|y) =
p(θ, y)

p(y)
=
p(y|θ)p(θ)
p(y)

(1)

In equation (1), θ denotes the unobserved quantity, which is also the parameter of interest and y
is the observed data. The posterior density, which is the probability of the unknown parameter
θ given the known data y, is p(θ|y). The joint probability distribution p(θ, y) for θ and y can be
expressed as the product of the prior p(θ) and the likelihood p(y|θ) of the known data y being
observed given the value of θ. p(y) =

∫
θ
p(y|θ)p(θ)dθ denotes the marginal probabilities of data y

over all the possible values of θ. In Bayesian statistics, probability models are applied in the process
of data analysis which allows uncertainty in inferences to be measured with probability. (Gelman
2005)

2.2 Challenge to implement Bayesian data analysis

The aim in Bayesian data analysis is to be able to make inferences from the available data about
the unknown parameter θ using the the posterior distribution p(θ|y). A substantial challenge to
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analytically determining the posterior distribution from Bayes’ rule is to compute the marginal
likelihood p(y). In order to illustrate the issue for the case when the parameter of interest θ is
continuous, equation (1) can be expanded into equation (2).

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

(2)

The integral in equation (2) can be impossible to evaluate analytically for non-trivial models and
deterministic numerical integration methods do not perform well when θ is high-dimensional. In
some cases, the issue can be addressed with a conjugate-prior approach where models are restricted
to simple likelihood functions with corresponding formulas for the prior distributions so that a
tractable integral is produced. Nevertheless, the conjugate-prior approach does not work in real-
istically complex models in practice. Many approaches of approximation have been developed to
estimate the posterior distribution instead of analytical approaches. One powerful approximation
approach, which involves random sampling of the posterior distribution, is regarded as the class of
Markov Chain Monte Carlo (MCMC) methods. These methods include numerous algorithms that
can generate representative parameter values from the posterior distribution of complex models
without evaluating the integral in equation (2). The statistical tools that apply these algorithms
have played a major role in making Bayesian statistics accessible for users in practice. (Kruschke
2015)

3 Approximation of the posterior distribution

In order to utilise the software that apply MCMC methods, it is helpful to understand the essential
idea of these methods. MCMC appoaches aim to accurately estimate the posterior distribution,
without evaluating the integral, by generating a large representative sample of the distributions
using random sampling.

MCMC methods explore the parameter space by generating a Markov chain whose limiting distribu-
tion is given by the posterior distribution to be approximated. MCMC methods generate correlated
samples from the posterior distribution, which can subsequently be used to estimate quantities with
respect to the posterior distribution such as expected values. Two important elements of MCMC
methods in practice are the burn-in period and the effective sample size. The burn-in period is
required to discard the initial samples generated such that the Markov chain has not yet converged
to the posterior distribution. It is crucial that the burn-in period for the MCMC chain is sufficiently
long so that the chain can reach convergence and the representative samples are only taken from
the posterior distribution. The quality of the MCMC sample can be assessed by the effective sam-
ple size (ESS), which is the number of effectively independent samples obtained from the MCMC
sampling output.The ESS takes into account that MCMC generates only correlated samples from
the posterior distribution. A low ESS, relative to the number of MCMC samples, indicates the
chain is poorly mixed whereas a high ESS, particularly when it is close to the total sample size,
shows good mixing and that the samples adequately represent the posterior distribution.

There are several systems that apply the MCMC methods to estimate the posterior distributions.
The two application tools examined in this project were JAGS and Stan. While the two systems
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possess some fundamental differences in their underlying algorithms, which will be discussed in
the coming sections, they both allow the implementation process of the MCMC methods to be
relatively simple. This makes the two software packages suitable for analysing data in complex
hierarchical models. When using these two statistical tools, users are only required to provide the
data, specify the prior distributions p(θ) and the statistical model believed to have generated data
y. The algorithms will then produce a large random sample of θ from the posterior distribution
p(θ|y) which allows users to access all the properties of the posterior distribution such as the mean
or credible intervals of the distribution so that they can make inferences about the parameters of
interest. (Kruschke 2015)

4 Statistical packages: JAGS and Stan

The two chosen statistical tools to examine in this project are JAGS and Stan. Both software
packages apply the principle of MCMC methods to directly sample from the posterior distribution.
One common advantage of JAGS and Stan is that they can work on various operating systems,
such as Windows, Mac OX, Unix and Linux, and they can be used in conjunction with popular
software such as MATLAB, R, Python for summarising and visualising the output of the MCMC
procedure.. For this project, JAGS and Stan were implemented in the R environment as they were
designed to work closely with the R language. (Depaoli, Clifton, and Cobb 2016)

This section provides a brief discussion on the underlying mechanisms and the components that are
essential to understand to use JAGS and Stan.

4.1 JAGS

JAGS is a statistical tool applying the MCMC methods to sample directly from probability distri-
butions for complex hierarchical models. JAGS is short for Just Another Gibbs Sampler (Plummer
2015). When Gibbs sampling is implemented, the posterior samples for each parameter are gener-
ated from the conditional distribution with the remaining parameters fixed to their current values.
The process is carried out for all the parameters, one at a time, and repeated until convergence is
reached for all parameters. (S. Geman and D. Geman 1984; Yildirim 2012) Moreover, JAGS also
implements other sampling strategies when sampling from the conditionals cannot be done directly.
(Plummer 2015)

The four key elements in the implementation process of JAGS include defining the data, specifying
the model, compiling the model and initialising the model. Users are only required to define the
data and specify the model in the format required by JAGS. The specifications can be done in
text files, script files, strings or functions. They also have the option to initialise the model by
specifying initial values for the MCMC chains and choosing which parameters to supply initial
values for. However, the model will be converted and compiled by JAGS. Any errors in the model
syntax will be identified at this compilation stage. Subsequent to the compilation process, JAGS
goes through an adaptation phase in which JAGS will decide the most appropriate samplers for
each parameter. The sampling process in JAGS takes place after this adaptation phase. The
users can specify the total number of iterations for sampling as well as the number of iterations
to discard (burn-in period). JAGS allows user to manually set monitors on parameters to record
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their simulated values in order to carry out diagnostic tests and assess summary statistics of the
posterior distributions of those parameters. (Depaoli, Clifton, and Cobb 2016)

In the R environment, there are a number of packages to call JAGS such as rjags, r2jags, runjags
(Plummer 2016; Su and Yajima 2015; Denwood 2016). Several packages have also been developed
for the convergence diagnostics of the MCMC sampling outcomes. In this project, the package
coda (Plummer et al. 2006) was used to assess convergence of the MCMC chains. Several resources
with instructions and examples on how to implement these packages are easily found, which makes
JAGS a useful tool to for beginners to implement Bayesian statistics.

4.2 Stan

Similar to JAGS, Stan is a software package that generates representative samples directly from
the posterior distributions of continuous parameters for hierarchical models. The name Stan stands
for Sampling Through Adaptive Neighborhoods (Kruschke 2015). Stan applies a different method
than JAGS to generate the Monte Carlo steps which can be more effective than the samplers in
JAGS for large complex models. The method implemented in Stan is called Hamiltonian Monte
Carlo (HMC).

Even though Stan is not always better or faster than JAGS, Stan uses C++ compiler which allows
more programming flexibility. This aspect of Stan and the fact that its underlying mechanism for
sampling is the HMC method make it useful for complex models where JAGS may display very poor
mixing properties. Stan requires a bit more effort to learn than JAGS. However, Stan’s extensive
documentation with detailed examples (Stan Development Team 2016) and its convenient platform
to communicate directly to the Stan development team about users’ issues facilitates the learning
process for Stan users very well.

As mentioned earlier, both JAGS and Stan apply MCMC methods which use random walks to
explore the parameter space so that direct sampling from the posterior distributions can occur.
Each new step from the current position in the walk is determined by a proposed jump, which is
sampled randomly from a proposal distribution. The proposed jump is then accepted or rejected
based on the relative density of the posterior at the proposed position and the current position. The
HMC method in Stan employs the gradient of the log posterior in its sampling algorithm to guide
the Monte Carlo steps of the random walks being more tuned towards the posterior distribution
(Kruschke 2015; Stan Development Team 2016). This implementation of the derivatives of the log
probability function helps Stan to reach convergence to the stationary distribution faster and to be
more efficient with subsequent parameter exploration. (Stan Development Team 2016)

The project calls Stan with the rstan package in the R programming environment. Stan is more
involved than JAGS in terms of model specification as it requires specific declarations of variables,
parameters together with their types and restrictions on their domains. Before sampling can start,
the model is translated and compiled into a dynamic shared object. In this phase, Stan would
also compute the gradient functions for the Hamiltonian dynamics, which can take some time
depending on the complexity of the model (Kruschke 2015). Similar to JAGS, users can specify the
total number of iterations, the number of warm up iterations, which is the equivalent of burn-in in
JAGS, the parameters to monitor as well as the initial values for parameters. There are also many
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packages to facilitate plots and diagnostics in Stan such as coda, ggmcmc, Shinystan (Plummer
et al. 2006; Fernández-i-Maŕın 2016; Stan Development Team 2017).

5 Data

The performances of JAGS and Stan were made based on their sampling results on two datasets.
A simulated dataset with a small number of data points and a large real dataset on accelerometer
data (Trost et al. 2011). This section provides a description of the data used in this project.

5.1 Simulated dataset

Our simulated dataset consists of 120 data points with no missing values. The data follows a linear
mixed-effects model with a continuous response variable. The data is treated as if it came from a
study where 20 participants were asked to walk on a treadmill. At different time intervals, each
participant’s concentration level is measured and recorded so that the relationship between the
amount of walking time and the level of concentration of a person can be investigated. The model
for this dataset can be expressed as equation (3).

yij = β0 + β1 × xij + γi + εij (3)

In equation (3), a subject, indexed by the i subscript, is measured at observation j to record a score
y. Subscript i goes from 0 to 20 and j goes from 1 to 6. The response yij is the concentration score
of subject i at observation j; yij can be any value between 0 to 100 with 0 being no concentration
and 100 being the highest concentration score. The covariate x in this model is treated as the
number of minutes the person spent walking on the treadmill. The possible values for xij are 0,
4, 8, 12, 16, 20. The terms γi and εij represent the subject effect and the error term respectively
in each observation. The intercept β0 and the slope β1 are the two parameters of interest to be
analysed with the two software packages.

5.2 Accelerometer dataset

The accelerometer dataset used in this project consists of just over 35000 observations, after re-
moving all the data points with missing values. The data comes from 222 participants between the
age of 5 and 18 years completing 12 different activity trials at four different time points (Drovandi
et al. 2015). The three types of trials in this study are sedentary activities (lying down, writing,
computer game), lifestyle activities (sweeping, laundry, throw and catch, aerobics, basketball) and
ambulatory activities (comfortable walk, brisk walk, brisk treadmill walk, running) (Trost et al.
2011). Four different cut-points were applied on each individual’s performance of the 12 activities
at each time point. These cut-points with their respective prediction equations are used to predict
the type of activities undertaken based on the output of the accelerometer. The response variable
in this dataset is a binary variable indicating whether the prediction was correct or not. The aim of

6



the analysis is to determine which of the cut-points are most effective and how this might depend
on the activity type and also the age of the participant.

The model we fit to this dataset is a logistic regression mixed effects model with a binary response
where age is a continuous variable, cut-points and the type of activities are four-factored and twelve-
factored variables respectively. The model considered both main effects and all two-way interactions
which resulted in 63 parameters in total. A normal random intercept was also included for each
participant.

The dataset was previously analysed for the effect of age (both main and interactions effects)
(Drovandi et al. 2015). However, in this project, as our aim is to compare the overall performances
of JAGS and Stan, the sampling results for the posterior distributions of all the 63 parameters were
compared.

6 Sampling results

Both the JAGS and Stan approaches are used on the simulated dataset and the accelerometer
dataset. When implementing JAGS and Stan to sample from the posterior distributions in each
dataset, we apply the same model specifications, prior distributions and initial values for the MCMC
chain. We also ran the MCMC chains for the same total number of iterations as well as the number
of iterations to be discarded. We then compared the performances of the two software packages
based on the effective sample size for each parameter, which is the equivalent number of independent
samples produced from the MCMC output, which gives correlated samples, and their computational
efficiency (the number of effective samples per unit of time).

6.1 Results on simulated dataset

In order to apply the MCMC sampling methods on the simulated data, we ran the model for 6000
iterations with the first 1000 iterations being discarded. The diagnostic plots from both JAGS and
Stan models show that convergence was reached for both parameters in both approaches. When
assessing convergence for each parameter, we looked for a consistent pattern with minimum changes
over a large number of iterations. Figure 1 is an illustration of successful convergence.

Figure 2 shows that both approaches arrived at very similar posterior distributions for both param-
eters in this example. Furthermore, table 1 shows that if the means of these posterior distributions
were used as the point estimates for the two parameters of interest β0 and β1, then both JAGS and
Stan gave the estimated values that were very close to the true values used to generate the data.
This means that the sampling outcomes are reliable in this case.

In term of efficiency, the sampling process took 0.435 seconds with JAGS and results in a perfect
effective sample size of 5000 for both β0 and β1 (from 5000 iterations). On average, JAGS would
give 1150 effective samples per 0.1 second for β0 and β1 respectively in this example. On the other
hand, Stan took 8.314 seconds to complete the sampling process and produces an effective sample
size of 274 and 1704 for β0 and β1 respectively (from 5000 iterations). Equivalently that means
about 4 and 21 effective samples per 0.1 second for β0 and β1 respectively. Clearly, JAGS is more
effective than STAN in this example.
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Figure 1: Illustrations of convergence

(a) β0 sampling (b) β1 sampling

Figure 2: Posterior distributions obtained from JAGS and Stan

(a) Posterior distributions for β0 sampling (b) Posterior distributions β1 sampling

Table 1: Estimated parameters on simulated dataset

Parameter β0 β1
Stan ESS 274 1704
JAGS ESS 5000 5000
Stan mean estimate 22.75 0.56
JAGS mean estimate 22.8 0.56
True value 23.8 0.57

6.2 Results on accelerometer dataset

In order to decide on the number of iterations to run for both the JAGS and Stan models for this
large dataset, we tried running the model in JAGS and Stan for a few different numbers of iterations,
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between 5000 iterations to 20000 iterations. We then inspected the diagnostic plot for each of the
63 parameters to see if convergence was reached. With the smaller total number of iterations or
smaller number of discarded iterations, convergence did not occur for some parameters in either
one of both of the models. Therefore, we decided to run the model for 20000 iterations with the
first 5000 iterations being discarded so that convergence was reached for all the parameters. We
then compared the final sampling outputs from the JAGS model and the Stan model.

Similar to the results on the simulated dataset, we found that the sampling outcomes from both
approaches on this dataset also arrived at very similar posterior distribution for each parameter.
Appendix 1 shows the mean of the posteriors obtained from JAGS and Stan for each parameter.
From table 2 in appendix 1, we can see the point estimates of the parameters, which are the means
of their respective posterior distributions, are very similar.

In term of sampling efficiency, figure 3 shows the number of ESS obtained from the models in JAGS
and Stan. Stan produced a much higher ESS on some parameters, while JAGS produced a higher
ESS of a large number of parameters. On top of that, computational time was a major advantage
of JAGS for this dataset. The sampling process took just over two hours to complete in JAGS
while it took around 31.5 hours in Stan. From appendix 1 it is obvious that the average number
of effective samples per hour for each parameter is much larger from the sampling output in JAGS
than Stan.

Figure 3: Effective Sample Size for 15000 iterations

Once again, JAGS produced a better sampling outcome for the majority of parameters in this
dataset and was faster over all compared to Stan.

7 Discussion

This report provides a brief introduction to the framework behind Bayesian inference and the idea
of MCMC sampling methods. It also gives an overview of the data as well as the statistical tools
we used to implement MCMC methods in this project. The advancement of computer hardware’s
power together with the availability of statistical software like JAGS and Stan allows analysis that
was not possible a few decades ago to take place. Our project implemented sampling in JAGS and
Stan, assessed and compared the sampling outputs to inspect their efficiency in term of effective
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sampling and computational efficiency. In both of the examples reported, the MCMC sampling
was more effectively delivered by JAGS than Stan. While both approaches arrived at more or
less the same posterior distributions for the unknown parameters, JAGS gave a perfect sampling
output in the more simple case of the linear mixed-effects simulated data and a much better overall
performance in the more complicated case of accelerometer data with a logistic regression mixed
effects model. In the more complicated dataset, Stan was able to get a better effective sample size
on parameters that took JAGS a long time to converge. This could be an indication that the HMC
methods implemented in Stan explores the parameter space more efficiently in complex cases where
JAGS may not do so well. For future work, we would be interested to come across a dataset where
JAGS does not perform so well so that we can really explore the advantages of the HMC sampling
approach.
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A Appendix 1: Sampling results on accelerometer data

Table 2: Summary of sampling outputs from JAGS and Stan

Parameter STAN ESS JAGS ESS Stan ESS/hour JAGS ESS/hour Stan mean JAGS mean
1 825 1917 26 924 1.73 1.727
2 921 1716 29 827 0.03 0.029
3 1757 2993 56 1442 -0.5 -0.494
4 1623 2580 51 1243 -0.04 -0.045
5 1638 1302 52 627 -1.4 -1.412
6 1004 2085 32 1004 -1.98 -1.971
7 1161 1953 37 941 0.39 0.403
8 1076 1833 34 883 -0.03 -0.02
9 998 1951 32 940 -1.48 -1.466
10 1114 2030 35 978 -0.26 -0.24
11 1057 2118 33 1020 -0.97 -0.959
12 1190 1849 38 891 1.99 1.994
13 960 2099 30 1011 -2.1 -2.096
14 1035 2147 33 1034 0.33 0.335
15 1344 1401 43 675 -2.53 -2.524
16 1012 2010 32 968 -1.75 -1.743
17 1653 2497 52 1203 -0.01 -0.016
18 1577 2613 50 1258 0 0.004
19 1537 1122 49 540 0.38 0.389
20 1687 2503 53 1206 -0.07 -0.077
21 1600 2367 51 1140 0 0
22 2062 847 65 408 -6.27 -6.262
23 1702 2735 54 1317 0.02 0.01
24 1643 2476 52 1193 0 0.004
25 2108 895 67 431 -3.4 -3.394
26 1659 2680 53 1291 -0.49 -0.499
27 1526 2517 48 1212 0.64 0.642
28 1503 1119 48 539 -2 -1.988
29 1518 2775 48 1337 -0.16 -0.165
30 1592 2357 50 1135 0.37 0.366
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Parameter STAN ESS JAGS ESS Stan ESS/hour JAGS ESS/hour Stan mean JAGS mean
31 1550 1175 49 566 -2.19 -2.183
32 1537 2668 49 1285 -0.01 -0.014
33 1478 2423 47 1167 0 0.004
34 1672 1174 53 565 0.3 0.31
35 1684 2640 53 1272 -0.09 -0.093
36 1672 2480 53 1194 0 0
37 2599 567 82 273 -5.98 -5.963
38 1649 2679 52 1290 -0.12 -0.127
39 1530 2503 48 1206 0.71 0.715
40 1466 1199 46 578 -0.71 -0.709
41 1673 2623 53 1263 0.17 0.169
42 1626 2478 52 1194 -1.56 -1.564
43 2042 1119 65 539 -4.36 -4.341
44 2690 1041 85 501 0.22 0.223
45 2074 1227 66 591 -1.57 -1.572
46 2131 724 67 349 -6.23 -6.218
47 1642 2820 52 1358 -0.26 -0.263
48 1478 2338 47 1126 -0.32 -0.316
49 1581 1167 50 562 -2.13 -2.123
50 6980 4049 221 1950 0.04 0.041
51 6700 4010 212 1932 0 0.003
52 7170 2294 227 1105 0.22 0.221
53 1095 1910 35 920 -0.01 -0.011
54 1252 1748 40 842 -0.09 -0.093
55 1248 1577 40 760 -0.26 -0.262
56 1078 1688 34 813 -0.02 -0.024
57 1046 1861 33 897 -0.1 -0.099
58 1162 1798 37 866 -0.06 -0.064
59 1233 1674 39 806 -0.27 -0.268
60 1126 1813 36 873 0 0
61 1148 1854 36 893 -0.18 -0.185
62 1626 1056 51 509 0.31 0.313
63 1108 1776 35 855 0.01 0.015
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