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Abstract

In this project we are particularly interested in the idea of a free product of graphs. The free product

of graphs is similar in a sense to the free product of groups. A free product of two groups G1 and G2

creates a new group G1 ˚G2 that consists of all possible ’reduced words’ formed from the elements of

the two groups. If X1 and X2 are the Cayley graphs of the two groups G1 and G2 respectively, then

the Cayley graph of G1 ˚G2 is the free product of the two Cayley graphs X1 and X2. The new Cayley

graph that is created from the free product of X1 and X2 is an infinite and highly symmetrical graph.

There are a number of different definitions of free products of graphs in the literature that define

a free product between any arbitrary graphs; not just Cayley graphs associated with groups. In

particular, there is a paper that discusses free products of rooted graphs and other definitions of free

product of graphs that are not necessarily concerned with whether a graph is rooted or not. This

paper compares these different definitions of free products of graphs alongside a new definition made

in the theory of totally disconnected, locally compact groups. In the second half of the report we look

at the automorphisms of free product graphs and provide a classification of the automorphisms of a

free product graph contained in a particular subgroup of the automorphism group.

1 Introduction

Given two groups G1 and G2, we can form their free product G1 ˚ G2 which is a group consisting of

all possible sequences of elements from the original two groups. We call these sequences words and

say that a word is reduced if we remove all occurrences of the identity element from the sequence and

if two adjacent elements in the sequence are from the same group, we replace this pair with their

product. The elements of the group G1 ˚ G2 are equivalence classes of words, where two words are

equivalent if one can be reduced to form the other word and the group operation is concatenation of

words.

When working with two groups we can consider their Cayley graphs; a graph that contains all the

elements of the group as vertices and an edge connects two vertices if we can multiply the group

element associated with one vertex by a generator, from a predetermined generating set, to get the

group element associated with the other vertex (See Appendix 1 for more detail). If G1 and G2 are

two groups with Cayley graphs Γ1 and Γ2 respectively, the Cayley graph of the group G1 ˚ G2 is a

very interesting graph; it is an infinite, highly symmetric graph and contains a copy of both Γ1 and
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Γ2 at each vertex. Now, what if we had a definition of ’free product’ for graphs, where we could take

some Cayley graphs Γ1, . . . ,Γn and form their free product which results in a graph isomorphic to the

Cayley graph of the free product of their respective groups; and could we generalise such a definition

to a free product of any arbitrary graphs? It just so happens there is, in fact there are a multitude of

different definitions of free products of graphs in the literature, each one being vastly different from

the other in their descriptions.

Some of these definitions of free products of graphs have large restrictions placed on their input

graphs, while other definitions are more general and can be used to take the free product of almost

any arbitrary graphs. In the sequel we will give an overview of the most prominent definitions of free

products of graphs, followed by an analysis of the similarities between these definitions.

2 Free Products of Graphs

2.1 Overview of Current Definitions

Below we will list some of the main definitions of free products of graphs from the literature that

we are concerned with in this paper. The first and main definition of free products of graphs that

we will be working with is the following definition made by George Willis in the theory of totally

disconnected, locally compact groups (see [1]).

Definition 1 [Willis]. Let Γ1, ...,Γn be connected graphs. Denote V plq as the collection of all ad-

missible strings of length l. Let u : V p˚n
i“1Γiq Ñ V pΓ1q ˆ ¨ ¨ ¨ ˆ V pΓnq be a function which we will

refer to as the update function. We define the update function and the collection of admissible strings

inductively. First, begin by setting V p0q “ tHu and upHq “ pu1, ..., unq P V1 ˆ ¨ ¨ ¨ ˆ Vn.

Then assume that V pkq and u
ˇ

ˇ

V pkq have been defined for all k P t0, ..., lu. For any ṽ “ v1 ¨ ¨ ¨ vk P V
pkq,

denote upṽq “ pu1pṽq, ..., unpṽqq, the string ṽvk`1 is admissible if vk P Vi and vk`1 P Vj with i ‰ j and

vk`1 ‰ ujpṽq. The update function for this string is defined as:

uhpṽvk`1q “

$

’

&

’

%

uhpṽq if h ‰ j

vk`1 if h “ j

Define the edges that are in the graph as follows. For the empty string, the edge tH, v1u is an

edge if tuipHq, v1u is an edge in the graph Γi. For an arbitrary admissible string ṽ “ v1, . . . vl in the
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free-product, an edge to this vertex can be formed in two different ways. First, construct an edge

tṽvl`1, ṽv
1
l`1u (for vl`1, v

1
l`1 P V pΓiq) if tvl`1, v

1
l`1u forms an edge in the graph Γi. Then the other

type of edge we are allowed to form is an edge tṽ, ṽvl`1u if vl`1 P V pΓjq, tujpṽq, vl`1u P EpΓjq . ˛

The second definition we will be drawing comparisons with is from the unpublished manuscript

Amalgamated Free Products of Graphs and Arc-Types by Möller et al. in [2] which defines a free

product of graphs as follows:

Definition 2 [Möller–Seifter–Woess–Zemljič]. Let Γ1 and Γ2 be two connected vertex-transitive

graphs with order (number of vertices in the graph) m and n respectively. Let Tm,n be the pm,nq-

biregular tree with its vertex set naturally partitioned into the two sets V1 and V2 where every vertex

in V1 has degree m and every vertex in V2 has degree n.

For each vertex v P V1 associate a copy Γv of the graph Γ1 at each vertex and define a bijection ψv

between the vertices of Γv and the edges incident to the vertex v in the graph Tm,n. Similarly, for

each vertex w P V2, we associate a copy Γw of the graph Γ2 and bijection ψw. Then the free product

Γ1 ˚ Γ2 is formed by taking the union of all the graphs Γv such that v P V pTm,nq and if e “ tv, wu

is an edge in Tm,n such that ψvpxq “ e “ ψwpyq for some x P Xv, y P Xw then we identify the two

vertices x and y. ˛

The following two definitions are more concerned with the free product of rooted graphs, however,

they are still of interest to our studies. The following definition is from a research paper Growth in

Products of Graphs by Pisanki and Tucker (see [3]).

Definition 3 [Pisanski–Tucker]. Let Gr and Hs be rooted graphs with roots r and s respectively.

The vertex set of the free product Gr ˚Hs is the set of all finite sequences of vertices from pV pGrq ´

truq Y pV pHsq ´ tsuq where the sequences alternate between V pGrq ´ tru and V pHsq ´ tsu. An edge

joins two sequences α and β if and only if either α “ γ and β “ γx where x is a vertex adjacent to

the corresponding root vertex or, α “ γx and β “ γy with x, y being adjacent vertices in one of the

graphs. ˛

The fourth and final definition we will discuss in this section (and in this paper) is the following

definition from the paper Combinatorics of Free Product Graphs by Gregory Quenell (see [4]). This

definition is particularly aimed at the free product of Cayley graphs, however, it is obvious that this
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definition could be generalised to the free product of any connected vertex-transitive graphs as seen

in definition 5 to come.

Definition 4 [Quenell]. Let Γ1 and Γ2 be two Cayley graphs of groups G1 and G2 respectively.

Recursively define graphs B1 and B2 as follows:

• B1 is the graph comprising of a single copy of Γ1 with an independent copy of B2 glued, by its

identity vertex, to each of the non-identity vertices in the copy of Γ1.

• B2 is the graph comprising of a single copy of Γ2 with an independent copy of B1 glued, by its

identity vertex, to each of the non-identity vertices in the copy of Γ2.

The free product Γ1 ˚ Γ2 is the graph constructed by taking the connected sum B17B2 (see definition

2.6 in [4]) of the graphs B1 and B2. This is the graph formed by glueing B1 and B2 together by their

identity vertices. ˛

Definition 4 is also extended to the free product of an arbitrary number of graphs as seen in definition

4.7 in [4] and outlined below:

Definition 5 [Quenell]. Let Γi be rooted graphs with roots ei for i “ 1, . . . , k. The branch Bi is

the graph formed by glueing copies of every Bj , j ‰ i, by the root vertices to each of the vertices in

Γi except ei. The free product graph Γ1 ˚ ¨ ¨ ¨˚ Γk is the graph B17 ¨ ¨ ¨ 7Bn. ˛

Throughout this paper we will mainly be focusing on working with the first three definitions outlined

here. The goal of this sections was to illustrate to the reader the wide variety of definitions of free

products of graphs there are in the literature.

2.2 Do these definitions produce isomorphic graphs?

In this section we aim to prove that the definitions outlined in section 2.1 produce isomorphic graphs

under some given restrictions. To avoid confusion between the definitions, for the remainder of section

2.2, we will let ˚1 denote the free product of graphs using definition 1 from the previous section and

similarly use ˚i to denote the free product using the ith definition. We start with a short lemma

which shows that the construction of a free product graph with definition 2 does not depend on the

bijections used for the construction.
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Lemma 2.2.1. Let Γ1 and Γ2 be connected vertex-transitive graphs with order m and n respectively.

Let Λ1 be the free product Γ1 ˚2 Γ2 constructed using the set of bijections tϕv : v P V pTm,nqu and Λ2

be the free product Γ1 ˚2 Γ2 constructed using the bijections tµv : v P V pTm,nqu. Then Λ1 – Λ2.

Proof (Sketch): For each copy of Γ1 associated with a vertex u P V pTm,nq, let V pΓuq “ tξu,1, . . . , ξu,mu.

Similarly for each copy of Γ2 associated with a vertex v P V pTm,nq, let V pΓvq “ tξv,1, . . . , ξv,nu. Also

label each of the vertices in Λ1 by the edge it is associated with in the underlying tree and label each

of the vertices in Λ2 the same except with a ‘prime’ this time. Now, define ψ : Λ1 ÝÑ Λ2 inductively

as follows. Choose some vertex ε1 P V pΛ1q; then there exists some adjacent u, v P V pTm,nq such that

the vertex ε1 is a result of identifying two vertices, one from Γu and one from Γv. Let ε2 P V pΛ2q be

the vertex identified between the two graphs Γu and Γv in Λ2; define ψpε1q “ ε2.

Then suppose that ψ has been defined on all vertices in Λ1 of up to distance k from the vertex ε.

Then given a vertex x P V pΛ1q at distance k ` 1 from ε, define ψpxq as follows. Let x1 P V pΛ1q be a

vertex at distance k from ε adjacent to x and suppose that ψpx1q “ y1 P V pΛ2q. The vertices x and x1

are contained in some unique sheet, say Γu which is a copy of the graph Γi (i “ t1, 2u). Then suppose

that Γv is the copy of Γi attached at y1 P V pΛ2q. Suppose that ϕ´1u px
1q “ ξu,k and µ´1v py

1q “ ξv,l.

Then since Γi is vertex-transitive, there exists an automorphism α P AutpΓiq such that αpξu,kq “ ξv,l.

The define ψpxq “ µvpαpξu,jqq where ϕ´1u pxq “ ξu,j .

The fact that ψ preserves adjacencies follows from α being an isomorphism. Injectivity and surjec-

tivity of ψ follows by another two induction argument similar to that seen in the proof of proposition

2.2.2 that follows.

The proof to the following proposition displays an isomorphism between definitions 1 and 2 of free

products of graphs. We assume that the graphs are vertex-transitive as there are cases when the two

free product graphs will not be isomorphic if the graphs are not vertex-transitive. This issue will be

discussed in more detail in section 2.3.

Proposition 2.2.2. If Γ1 and Γ2 are connected vertex-transitive graphs, then Γ1 ˚1 Γ2 – Γ1 ˚2 Γ2.

Proof : Let Γ1 and Γ2 be connected vertex-transitive graphs with order m and n respectively.

Let V pΓ1q “ tω1, . . . , ωmu and V pΓ2q “ tν1, . . . , νnu. We need to construct an isomorphism ψ :

Γ1 ˚1 Γ2 ÝÑ Γ1 ˚2 Γ2; this will be done inductively. First define a graph embedding ϕpx,iq : Γi Ñ

Γ1 ˚2 Γ2 such that ϕpx,iq is an isomorphism between the graph Γi and the unique Γi-sheet at the

vertex x P V pΓ1 ˚2 Γ2q. Initiate the update function for constructing Γ1 ˚1 Γ2 by upHq “ pωa, νbq,
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a P t1, . . . ,mu and b P t1, . . . , nu. Then choose some vertex x0 P V pΓ1˚2Γ2q such that ϕ´1
px0,1q

px0q “ ωa

and ϕ´1
px0,2q

px0q “ νb; define ψpHq “ x0. If there does not exist such an x0, we can modify our choices

for our initial values of upHq to suit as this does not affect the structure of our graph (see Proposition

2.8 in [1]).

Now suppose that ψ has been defined on all admissible strings in Γ1 ˚1 Γ2 of up to length l. Given

some ṽ “ v1 ¨ ¨ ¨ vl P V
plq with ψpṽq “ y P V pΓ1 ˚2 Γ2q, if ṽvl`1 P V

pl`1q, define ψpṽvl`1q as follows.

Suppose vl P V pΓ1q and that u2pṽq “ νi. If ϕ´1
py,2qpyq “ νk and vl`1 “ νj P V pΓ2q then we have

tνi, νju P EpΓ2q by definition of the free product ˚1. Since Γ1 and Γ2 are both vertex-transitive

graphs, there exists an α P AutpΓ2q such that αpνiq “ νk. Then define ψpṽvl`1q “ ϕpy,2qpαpνjqq.

Similarly, if vl P V pΓ2q, define ψ in exactly the same way except with the roles of Γ1 and Γ2 exchanged

as well as the ω’s and ν’s.

Now, if ṽ “ v1 ¨ ¨ ¨ vl P V
plq and ṽvl`1 P V

pl`1q are two adjacent admissible string in Γ1˚1Γ2 as defined

in the previous paragraph, then αpνiq “ νk and αpνjq are adjacent in Γ2 since α is a graph automor-

phism and it follows that ψpṽq and ψpṽvl`1q are adjacent since ϕ is a graph isomorphism. Again, a

similar argument can be applied for the case when vl P V pΓ2q. Thus ψ is a graph homomorphism.

We need to show that this homomorphism is actually an isomorphism. To prove that it is injective,

suppose ṽ “ v1 ¨ ¨ ¨ vm P V pmq and ṽ1 “ v11 ¨ ¨ ¨ v
1
n P V pnq with ψpṽq “ ψpṽ1q. Let ψpHq “ x0 P

V pΓ1 ˚2 Γ2q. We must have that v1, v
1
1 P V pΓiq and ϕpx0,iqpv1q “ ϕpx0,iqpv

1
1q otherwise ψpṽq and ψpṽ1q

would be in different branches of the free product graph Γ1 ˚2 Γ2. Since ϕpx0,iq is an isomorphism,

v1 “ v11. Continuing by induction, with a similar argument we see that m “ n and vk “ v1k for all

k P t1, . . . ,m “ nu so that ṽ “ ṽ1.

Similarly, we will prove surjectivity by induction. Suppose that ψpHq “ x0 P V pΓ1 ˚2 Γ2q. Clearly

all the vertices in the Γ1-sheet and Γ2-sheet attached to x0 have vertices mapping onto them. Then

suppose that all Γi-sheets, i “ 1 or 2, of up to distance k from x0 have an element of V pΓ1 ˚1 Γ2q

mapping onto them. Given some Γi-sheet S at distance k ` 1 from x0, there is a unique Γj-sheet

S 1 (i ‰ j) at distance k from x0 that S is attached to. Let x be the unique vertex shared by S

and S 1; by hypothesis there exists ṽ P V plq such that ψpṽq “ x. It follows that given any y P V pSq,

there exists vl`1 P Γi such that ψpṽvl`1q “ y since ϕpx,iq is a graph embedding of Γi at the vertex

x P V pΓ1 ˚2 Γ2).

The following proposition displays an isomorphism between definition 1 and 3. We define a rooted

graph to be a graph that has a distinguished vertex i.e. we choose one vertex from the graph and call
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it the ’root’. A rooted graph is vertex-transitive if when we disregard the root vertex, the underlying

graph is vertex-transitive.

Proposition 2.2.3. If Γ1 and Γ2 are rooted connected vertex-transitive graphs, then Γ1 ˚1 Γ2 –

Γ1 ˚3 Γ2.

Proof : Let Γ1 and Γ2 be rooted connected vertex-transitive graphs with roots r and s respectively.

We will construct an isomorphism ψ : Γ1 ˚1 Γ2 Ñ Γ1 ˚3 Γ2 inductively. Initiate the update function

for constructing the graph Γ1 ˚1 Γ2 by upHq “ pr, sq. Define ψpHq “ ε where ε is the empty string in

the graph Γ1 ˚3 Γ2.

Suppose that ψ has been defined on all admissible strings in Γ1 ˚1 Γ2 of up to length l. Take

some ṽ P V plq with upṽq “ pu1pṽq, u2pṽqq and suppose that ψpṽq “ x P V pΓ1 ˚3 Γ2q. Then given

ṽvl`1 P V
pl`1q with vl`1 P V pΓiq, define ψpṽvl`1q “ xαpvl`1q where α P AutpΓiq such that αpuipṽqq is

the root vertex in the graph Γi.

This defines our map ψ. We need to prove that it is in fact an isomorphism. First we will show that

ψ preserves adjacencies. There are two cases:

Case 1 - ṽ and ṽvl`1 are adjacent in Γ1 ˚1 Γ2: Suppose that ṽ P V plq and ṽvl`1 P V
pl`1q are two

adjacent vertices in Γ1 ˚1 Γ2 and ψpṽq “ x P V pΓ1 ˚3 Γ2q. Then uipṽq is adjacent to vl`1 in the graph

Γi. If α P AutpΓiq is the automorphism such that αpuipṽqq is the root vertex, then αpvl`1q is adjacent

to the root vertex since α is an automorphism and hence x and xαpuipṽqq are connected.

Case 2 - ṽvl`1 and ṽv1l`1 are adjacent in Γ1 ˚1 Γ2:

Suppose that ṽvl`1, ṽv
1
l`1 P V

pl`1q are two adjacent vertices in Γ1 ˚1 Γ2 with vl`1, v
1
l`1 P V pΓiq and

ψpṽq “ x P V pΓ1 ˚3 Γ2q. Then if α P AutpΓiq is the automorphism such that αpuipṽqq is the root

vertex in Γi, then αpvl`1q and αpv1l`1q are both adjacent vertices in Γi since α is an automorphism

and hence xαpvl`1q and xαpv1l`1q are adjacent in Γ1 ˚3 Γ2.

Now, to prove that ψ is injective, suppose that ṽ “ v1 ¨ ¨ ¨ vm and ṽ1 “ v11 ¨ ¨ ¨ v
1
n are two admissible

strings in Γ1 ˚1 Γ2 such that ψpṽq “ ψpṽ1q. Clearly m “ n otherwise we could not have ψpṽq “ ψpṽ1q

under this construction. Now we must have that v1 “ v11 otherwise ψpv1q ‰ ψpv11q which would result

in ψpṽq and ψpṽ1q being located on different branches of the free product graph Γ1 ˚3 Γ2. Continuing

by induction, with a similar argument, we see that vk “ v1k for all k P t1, . . . ,m “ nu and hence ψ is

one-to-one.
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We prove surjectivity also via induction. Clearly ψpHq “ ε and all vertices whose associated sequences

are of length 1 in Γ1˚3Γ2 have a vertex in Γ1˚1Γ2 mapping to them. Now suppose that all vertices in

Γ1 ˚3 Γ2 associated with sequences of up to length l have a vertex from Γ1 ˚1 Γ2 mapping onto them.

Take some sequence x P V pΓ1 ˚3 Γ2q of length l`1 and let x1 be the sequence in V pΓ1 ˚3 Γ2q of length

l whose first l entries are the same as x. Then, under assumption, there exists ṽ “ v1 ¨ ¨ ¨ vl P V
plq such

that ψpṽq “ x1. Suppose vl P V pΓjq. There exists α P AutpΓiq such that αpuipṽqq (i ‰ j) is the root

vertex in Γi and vl`1 P V pΓiq such that αpvl`1q is the last member of the sequence x. It follows that

ψpṽvl`1q “ x.

The following proposition is the final proposition of this section. It states that definition 1 and 4

produce isomorphic graphs if the initial graphs are vertex-transitive. We omit the proof however as it

is an almost identical argument to that of the proof in Proposition 2.2.2.

Proposition 2.2.4. If Γ1 and Γ2 are connected vertex-transitive graphs, then Γ1 ˚1 Γ2 – Γ1 ˚4 Γ2.

Proof (Sketch): Define ψ : Γ1 ˚1 Γ2 ÝÑ Γ1 ˚4 Γ2 inductively. Let e be the vertex identified when

taking the connected sum of B1 and B2 in the construction of Γ1˚4Γ2; define ψpHq “ e. Then there is

a unique Γ1-sheet and Γ2-sheet attached to H P V pΓ1 ˚1 Γ2q, map these sheets onto the corresponding

sheets attached to e P V pΓ1 ˚4 Γ2q.

Now suppose that ψ has been defined on all sheets of up to distance k from H P V pΓ1 ˚1 Γ2q. Then

given a sheet S P Γ1 ˚1 Γ2 at distance k from H and the corresponding sheet S 1 P Γ1 ˚2 Γ2 that it is

mapped to by ψ, map each of the |V pSq|´ 1 sheets attached to S at distance k ` 1 from H onto the

|V pSq|´ 1 sheets attached to S 1 at distance k ` 1 from e in Γ1 ˚4 Γ2.

Corollary 2.2.5. If Γ1, . . . ,Γn are connected vertex-transitive graphs, then Γ1 ˚1 ¨ ¨ ¨˚1 Γn – Γ1 ˚5

¨ ¨ ¨˚5 Γn.

Proof : Follows from the associativity of the free product.
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2.3 Discussion of the Definitions

2.3.1 Definition 2

The first definition in this paper of free products of graphs is the most general of the four definitions

listed; it can take in any countable number of graphs and only requires them to be connected. This

is not the case however in definition 2 (and definitions 3 and 4 for the matter). Definition 2 can only

take an input of two graphs and it requires these graphs to be connected and vertex-transitive.

When working with definition 1 to construct a free product of two graphs, the construction of the free

product graph begins at the empty string by initiating the update function, then iteratively defines

all the admissible strings that act as vertices in the graph and the update functions that go along

with each vertex/admissible string. The edges are then formed under a certain criteria as outlined

earlier in section 2.1. After going through a few examples of constructing graphs with definition 1, it

becomes apparent that there is a more geometric intuition as to what this construction is doing. If we

have connected graphs Γ1, . . . ,Γn and construct the free product graph ˚n
k“1Γk using definition 1, we

start by attaching all the graphs Γj (j P t1, . . . , nu) to the empty string by the vertex ujpHq P V pΓjq.

Then, given an admissible string ṽ “ v1 ¨ ¨ ¨ vl P V
plq in ˚n

k“1Γk, the unique Γj-sheet at ṽ is attached

to ṽ by the vertex ujpṽq P V pΓjq. Essentially, given a particular Γj-sheet in the free product graph,

we attach all the graphs Γi with i ‰ j to each of the vertices in the Γj-sheet that don’t already have a

copy of Γi attached. The update function provides the information as to which vertex in Γi is attached

to the Γj-sheet.

This particular construction of the free product graph has already somewhat ’predetermined’ what

orientation each of the graphs Γ1, . . . ,Γn are going to attach to the admissible strings in ˚n
k“1Γk. This

is not the case however in definition 2; there is some ambiguity in what orientation each of the graphs

are going to be connected to each other. In definition 2, if both of the graphs that you are constructing

the free product of are not vertex-transitive graphs, then the resultant free product graph may not be

isomorphic to the free product of the graphs if definition 1 is used, as the orientation of the graphs at

each vertex is random and does not have ’predefined’ what orientation each of the graphs will connect

to each other.

In saying that however, even if both of the graphs are not vertex-transitive, a connected graph will

still be created, it just won’t necessarily be isomorphic to the graph constructed if definition 1 is used.

This issue could be remedied however; we could more precisely define how each of the vertices will
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be identified during the construction of the free product graph by labelling all the vertices of the two

graphs and explicitly define what vertices can be identified with each other and which cannot in a

certain way so that the ’correct’ graph will be constructed. This will result is a construction akin to

that of definition 1.

What has been said in the previous paragraphs would seem to indicate that definition 1 is a far more

superior construction for the free product of graphs than definition 2. Whilst this may be the case in

certain instances, definition 2 provides a very intuitive and easy construction of the free product of

two graphs, allowing for a quick visualisation of what the resultant graph will look like. On the other

hand, definition 1 is more complicated and takes more time to construct a graph, however it provides

a more precise construction which is favourable in certain circumstances.

2.3.2 Definition 3

The construction of definition 3 by Pisanski and Tucker is very similar to the construction in definition

1 by Willis, however, there is one distinct difference.

Both definitions 1 and 3 start by defining all the vertices in the free product graph to be sequences

of vertices from the base graphs and they provide some criteria as to which sequences will be ’allowed’

to form vertices in the free product graph. The two definitions also define the edge relations in an

almost identical way.

There is one major difference between these definitions however. As described in section 2.3.1,

definition 1 intuitively constructs the free product graph by connecting all the graphs to the empty

string by the vertex in the update function on the empty string, and then continues to construct

the free product graph by joining each of the graphs to each of the admissible strings that do not

already contain a copy of that graph and the update function determines the orientation at which the

graph attaches. In comparison, in definition 3 there is no update function, the free product graph is

constructed by attaching each graph by its root vertex each time it is placed into the free product

graph during the construction. This means that in definition 3 the graphs attach at each of the strings

with the same orientation each time whereas in definition 1 the ’orientation’ varies depending on the

admissible string it is attaching to.

This creates the problem we encountered when trying to prove that the two definitions produce

isomorphic graphs. If the two graphs that we are taking the free product of are not vertex-transitive,

then the differences in how the graphs attach at each of the strings in the free product graph may
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result in the two definitions producing non-isomorphic graphs.

2.3.3 Definition 4

Definition 4 is similar in a sense to definition 2. While definitions 1 and 3 both construct the free

product graph by labelling vertices with sequences of vertices from the original graphs and then

defining edge relations in a similar method, definitions 2 and 4 build the free product graph with a

more ’visual’ construction rather than specifically defining vertices and edge relations.

Given two connected vertex-transitive graphs Γ1 and Γ2, both definitions construct the free product

graph essentially by attaching a copy of Γ1 to each of the vertices in Γ2 and similarly attaching a copy of

Γ2 to each of the vertices in the copies of Γ1 just attached and repeating this process indefinitely. Both

of the definitions require that the graphs are vertex transitive as they do not specify the orientation

as to which each of the sheets in the free product graph need to attach unlike definitions 1 and 3.

3 Automorphisms of Free Product Graphs

3.1 Classification of Automorphisms of a Free Product Graph

In Jacque Tits’ paper Sur le groupe des automorphismes d’un arbre ([5]), he classifies automorphisms

of a tree into three classes; elliptic, inversion and hyperbolic automorphisms. Elliptic automorphisms

are automorphisms that fix a vertex, inversions are automorphisms that invert an edge and hyperbolic

automorphisms are essentially any automorphism that does not fall into either of these classes. To

classify the automorphisms, Tits’ defines a function on the automorphisms of the tree which outputs

the minimum distance any point in the tree is moved under a given automorphism. This construction

allows him to classify the automorphisms in this particular way. In the sequel we will begin to develop

a classification for automorphisms of graphs constructed from a free product of graphs similar to that

of trees in Tits’ paper.

Before we get started, there are a few terms that need to be defined first. As in [1], given a path

P “ tx1, . . . , xnu Ă V p˚n
i“1Γiq, a point xk in the path is called a transition point of the path P

if txk´1, xku P EpΓiq and txk, xk`1u P EpΓjq for i ‰ j. A path Prṽ,ṽ1s between two vertices ṽ, ṽ1 P

V p˚n
i“1Γiq will be called minimal if there is no other distinct path between ṽ and ṽ1 of strictly shorter

length. The path Prṽ,ṽ1s is called reduced if there are no cycles or backtracking in the path.
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Let pSjqjPJ be a sequence of sheets in the free product graph ˚n
i“1Γi with either J “ Z, J “ N

or J “ r0, ns Ă N Y t0u. Then we say that pSjqjPJ is a string of sheets in ˚n
i“1Γi if it satisfies the

following conditions:

• Sj is connected to Sj`1 in ˚n
i“1Γi for each j P J .

• For each k P J , there are at most two sheets in tSjujPJ attached to Sk

• Sj´1 and Sj`1 do not share the same vertex in Sj for each j P J .

If J “ N, then we call pSjqjPJ an infinite string of sheets in ˚n
i“1Γi. If J “ Z, then we call

pSjqjPJ a bi-infinite string of sheets in ˚n
i“1Γi. Let rS,S 1s denote the unique string between the sheets

S,S 1 P ˚n
i“1Γi. In this case we will call S and S 1 the initial and terminal sheets respectively. Given

a string of sheets rS,S 1s, we define the length of this string to be the number of sheets in the string

and denote the length by `pS,S 1q.

3.1.1 Classification of Automorphisms via Their Action on Sheets

Let Γ1, . . . ,Γn be connected graphs and let S denote a sheet in the free product graph ˚n
i“1Γi. Given

two sheets S and S 1, define the distance between the two sheets, dpS,S 1q, to be dpS,S 1q “ `pS,S 1q´1.

Now, lets restrict our attention to the subgroup G ď Autp˚n
i“1Γiq that contains only automorphism

that send sheets to other sheets in the free product graph.

Given any α P Autp˚n
i“1Γiq, define a function ‖¨‖ : Autp˚n

i“1Γiq ÝÑ NY t0u by:

‖α‖ “ mintdpS, αpSqq : S P ˚n
i“1Γiu

Using the above function, it is now possible to classify the automorphisms in this particular subgroup

of the automorphism group into classes depending on how they act on individual sheets in the free

product graph.

If α P G such that ‖α‖ “ 0, then the automorphism α is stabilising some sheet S in the free product

graph i.e. αpSq “ S. Notice that it does not necessarily have to fix all the vertices of S though. The

automorphisms that satisfy this condition include all the automorphisms of the component graphs

acting as a symmetry about a single sheet in the free product graph, provided such an automorphism

exists of course.
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Those automorphisms α P G satisfying ‖α‖ “ 1 fall into two classes. Either α permutes adjacent

isomorphic sheets in the free product graph, while stabilising no single sheet in the graph or α is a

non-trivial translation along a bi-infinite string of sheets in the free product graph. As we will see in

the theorem to follow, these particular automorphism can be represented by the composition of an

automorphism that fixes a vertex with an automorphism that stabilises a sheet in the free product

graph.

Automorphisms satisfying ‖α‖ ą 1 are analogous to hyperbolic automorphisms of a regular tree.

These automorphisms stabilise no sheet in the graph; we can think of these automorphisms as being

a non-trivial translation along a bi-infinite string of sheets in the free product graph.

The Theorem 3.1.3 below provides a classification of automorphisms that are contained in this sub-

group of automorphisms that send sheets to other sheets in the free product graph. Before we get to

the theorem, we have two lemma’s.

Lemma 3.1.1. Let Γ1, . . . ,Γn be connected graphs and suppose that there exists an isomorphism

ϕ : Γ1 ÝÑ Γ2. If S and S 1 are the sheets in ˚n
i“1Γi associated with Γ1 and Γ2 respectively attached to

H with ϕpu1pHqq “ u2pHq, then there exists an automorphism α P Autp˚n
i“1Γiq such that αpSq “ S 1,

αpS 1q “ S and α fixes H.

Proof : Assume the hypotheses. Let α : Γ1 ˚ Γ2 ÝÑ Γ1 ˚ Γ2. Begin by defining αpHq “ H. Then

let ψpvq “ ϕpvq if v P V pΓ1q, ψpvq “ ϕ´1pvq if v P V pΓ2q and ψpvq “ v if v R V pΓ1q Y V pΓ2q. Define

αpṽq “

$

’

&

’

%

ψpv1q ¨ ¨ ¨ψpvlq, if v1 P V pΓ1q Y V pΓ2q

v1 ¨ ¨ ¨ vl, if v1 R V pΓ1q Y V pΓ2q

for any ṽ “ v1 ¨ ¨ ¨ vl P V
plq .

First we need to show that for any ṽ “ v1 ¨ ¨ ¨ vl P V
plq, ψpv1q ¨ ¨ ¨ψpvlq P V

plq. Clearly if vi, vj are

elements of the string not from the same graph, then ψpviq, ψpvjq are also vertices not from the same

graph by definition of ψ and hence the first condition for admissible strings is satisfied. Then if

ṽ, ṽvl`1 are admissible strings, assuming that vl`1 P V pΓiq, ψpuipṽqq ‰ ψpvl`1q since ϕ and ϕ´1 are

isomorphisms thus the second condition for admissible strings is satisfied.

Now we need to prove that α is an automorphism. To prove that α preserves adjacencies, there are

two cases:
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Case 1 (ṽ, ṽvl`1 are adjacent): Suppose that ṽ “ v1 ¨ ¨ ¨ vl and ṽvl`1 are adjacent admissible strings.

Then supposing that vl`1 P V pΓiq, ψpvl`1q is adjacent to ψpuipṽqq since ϕ and ϕ´1 are isomorphisms

and uipṽq, vl`1 are adjacent, thus ψpv1qψpv2q ¨ ¨ ¨ψpvlq and ψpv1qψpv2q ¨ ¨ ¨ψpvlqψpvl`1q are adjacent.

Case 2 (ṽvl`1, ṽv
1
l`1 are adjacent): Suppose that ṽvl`1, ṽv

1
l`1 are adjacent admissible strings. Then

if vl`1, v
1
l`1 P V pΓiq are adjacent, so are ψpvl`1q, ψpv

1
l`1q since ϕ and ϕ´1 are isomorphisms. Thus

ψpv1q ¨ ¨ ¨ψpvl`1q and ψpv1q ¨ ¨ ¨ψpv
1
l`1q are adjacent.

Injectivity and surjectivity of α again follow from the fact that ϕ and ϕ´1 are isomorphisms.

Lemma 3.1.2. Let Γ1, . . . ,Γn be connected graphs and suppose that there exists an isomorphism

ϕ : Γ1 ÝÑ Γ2. Then if S and S 1 are Γ1 and Γ2-sheets respectively attached at the vertex ṽ P V p˚n
i“1Γiq

with ϕpu1pṽqq “ u2pṽq, then there exists an automorphism α P Autp˚n
i“1Γiq such that αpSq “ S 1,

αpS 1q “ S and α fixes the vertex ṽ.

Proof : Let Γ “ ˚n
i“1Γi be the free product graph described in the lemma with the sheets S and S 1

attached at ṽ. Then create a new free product graph Γ1 “ ˚n
i“1Γi whose update function is initialised

as upṽq. Then by Proposition 3.8 in [1], there exists an isomorphism µ : Γ ÝÑ Γ1 such that µpṽq “ H1,

where H1 is the string of length zero in Γ1, and each of the sheets attached at ṽ P V pΓq are mapped to

their corresponding sheets at H1 P V pΓ1q. Then the required isomorphism is α1 “ µ´1 ˝α ˝ µ where α

is the automorphisms defined in the previous lemma.

Theorem 3.1.3. Let G ď Autp˚n
i“1Γiq be the subgroup of the automorphism group of the free

product graph only containing automorphisms that map sheets to sheets. If α P G, then α satisfies

one of the following conditions:

• ‖α‖ “ 0 and α stabilises a sheet in ˚n
i“1Γi

• ‖α‖ “ 1, α does not stabilise a sheet and α is the composition of an automorphisms αv that

fixes a vertex and an automorphism αs that stabilises a sheet in the free product graph ˚n
i“1Γi

• ‖α‖ ą 1 and α is a non-trivial translation along some bi-infinite string of sheets in ˚n
i“1Γi

Proof : Suppose that α P G. Set minpαq “ tS P ˚n
i“1Γi : dpS, αpSqq “ ‖α‖u. If ‖α‖ “ 0, then

it is clear that α is stabilising a sheet in the free product graph by looking at the definitions of the

functions ‖¨‖ and d.
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Now suppose that ‖α‖ “ 1 and S P minpαq. If α fixes a vertex than we can take αs to be the identity

automorphism. So suppose that α does not fix a vertex. Since ‖α‖ “ 1 we must have that α maps S

onto an adjacent sheet S 1 i.e. αpSq “ S 1 and keeps no sheet stabilised. First consider the case where

we have the free product of only two graphs. Take the vertex v P V pSq X V pS 1q and consider the

vertices αpvq and α´1pvq in ˚n
i“1Γi.

The sheet attached to S at α´1pvq, call it S2, is mapped onto S under α (i.e. αpS2q “ S) and hence

there must be an isomorphism between S and S 1 that maps the vertices in S and S 1 attached at v to

each other. This follows since S 1 and S2 are a copy of the same graph attached by the same vertex

(due to the update function) to the sheet S.

Then by Lemma 3.1.2, there exists an automorphism β P Autp˚n
i“1Γiq such that β fixes the vertex

v and β swaps the sheets S and S 1. Then α ˝ β is an automorphism of the free product graph that

stabilises the sheet S and α “ pα ˝βq ˝β´1 is the composition of an automorphism that fixes a vertex

and an automorphism that stabilises a sheet.

In the case where we are taking the free product of more than two graphs, there has to be an

isomorphism between the sheets attached at α´1pvq and the sheets attached at v. A similar argument

can then be employed to construct the automorphism β.

If ‖α‖ ą 1 and S P minpαq, then the unique string of sheets containing the set of sheets tαmpSq | m P

Zu forms a bi-infinite string of sheets that α translates along.

Classifying the automorphisms of a free product graph in this way seems very natural and is similar

in a sense to the way Tits classifies automorphisms of a tree. This classification makes a lot of sense

especially when working with definition 2 as we can imagine the automorphisms of the underlying

tree being automorphisms of the free product graph. It should be possible to extend this idea of an

underlying tree of a free product graph to free products of more than two graphs and make inferences

of the automorphisms of the free product graph by automorphisms of the underlying tree. This idea

however is only possible in this case where we are only considering automorphisms that map sheets

to sheets.

The reason behind having to restrict the automorphism group to a certain subgroup of automorphisms

that only map sheets onto other sheets is because there exists particular free product graphs that have

automorphisms mapping a single sheet onto pieces of multiple sheets. As an example, take the Cayley

graph of the integers with respect to the standard generating set. This Cayley graph is a bi-infinite line

and the free product of it with itself forms an infinite tree isomorphic to the Cayley graph of the free
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group on two generators (see Appendix 1 for a picture). Take the sheet that is the long (bi-infinite)

horizontal line passing through the origin. There is an automorphism of this sheet that maps it onto

any other bi-infinite path passing through the origin in the free product graph. This path could consist

of possibly an infinite number of different sheets and this constitutes an automorphism that does not

map a sheet onto a single other sheet. More work still needs to be done to provide a full classification

of the automorphisms of a free product graph, however, the work done in this section provides a neat

classification of the automorphisms contained in this particular subgroup of automorphism that map

sheets to sheets. One question now would be to work out what types of free product graphs have their

full automorphism group coincide with the subgroup G.

4 Conclusion

In this project, we have successfully proved that the four definitions of free products of graphs, those

mentioned earlier in the piece, produce isomorphic graphs given that the input graphs are vertex-

transitive. This shows that the free product of any Cayley graphs will be isomorphic no matter which

definition of free product we choose, however, there is still some ambiguity when constructing the free

product of graphs that are not vertex-transitive.

We have also developed a classification of certain automorphisms of a free product graph analogous

to the way Jacque Tits classifies the automorphisms of a regular tree. This work further develops our

understanding of automorphisms of free product graphs which will potentially lead to new outcomes

in the theory of totally disconnected, locally compact groups. There is still, however, more work to

be completed to provide a full classification of automorphism of a free product graph.
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Appendix 1: General Concepts & Terminology

Graph Theory

Throughout this paper the reader will encounter a substantial amount of graph theory terminology

and ideas. This section aims to refresh the readers memory of typical graph theory concepts whilst

setting out the notation that will be used throughout the rest of the paper. We will start out with

some typical definitions that the reader should already be familiar with.

Definition (Graph). A graph Γ “ pV pΓq, EpΓqq is a pair of sets V pΓq and EpΓq where EpΓq is a

collection of unordered pairs of elements from V pΓq. We call the elements of V pΓq the vertices, the

elements of EpΓq the edges and denote an edge between v1, v2 P V pΓq by tv1, v2u. In the case when

we consider the edge set EpΓq to consist of ordered pairs of vertices instead of unordered pairs, we

will call the graph Γ a directed graph and the elements of E arcs. ˛

The reader will probably be familiar with the geometric representation of a graph. A graph can be

drawn in the plane with the vertices representing points in the plane and a line is drawn between two

vertices v1, v2 P V pΓq if tv1, v2u P EpΓq. In the case where Γ is a directed graph, an edge pv1, v2q P EpΓq

will be represented by an arrow from v1 to v2.

A vertex v P V pΓq has degree n, denoted degpvq, if there are n edges incident with v (or connecting

to v). A graph is said to be k-regular or regular with degree k if every vertex in the graph has degree

k.

Definition (Path). A path in a graph Γ “ pV pΓq, EpΓqq is a sequence v1, e1, v2, . . . , vn´1, en´1, vn

where v1, . . . , vn P V pΓq, e1, . . . , en P EpΓq and the edge ei must connect the two vertices vi and vi`1

for all i P t1, . . . , n´ 1u. We say that the path is closed if v1 “ vn and call the closed path a cycle if

it has no repeated vertices. ˛

A graph Γ is said to be connected if given any two vertices from Γ, we can find a path connecting

the two vertices. A graph is called bipartite if its vertex set can be partitioned into two sets with no

vertex in one set of the partition being adjacent to another member of that partition.

Later in this paper we will come across biregular trees. A tree is just the usual notion of a tree; a

connected graph with no cycles or equivalently a connected graph of order n containing n´ 1 edges.
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A Biregular tree is a tree that forms a bipartitite graph and any two vertices in the same set of the

partition have the same degree. These trees are infinite as one would expect.

Definition (Graph Homomorphism). Let Γ1 and Γ2 be graphs. A homomorphism from Γ1 to

Γ2 is a map ψ : V pΓ1q Ñ V pΓ2q such that if x1, x2 P V pΓ1q are adjacent, ψpx1q and ψpx2q must be

adjacent in Γ2. If ψ is injective then we call it an isomorphism and an isomorphism from a graph to

itself is called an automorphism. ˛

In this paper, we encounter groups of automorphisms acting as symmetries on a graph. This forms

an important part of our study.

Free Groups & Free Products of Groups

Before we introduce the notion of a free group, we need to define what a ’word’ is. Given a set of

generators S for some group, a word in S is a sequence of elements from S. We call S the alphabet

and say that a word is reduced if there is no element in the sequence adjacent to its formal inverse.

As an example, given the set S “ ta, bu, a, b, abab, a3b2 are all words made up from the elements in S.

If we now consider the set S YS´1 as our alphabet, the word abaa´1b is not reduced and the reduced

form of this word is ab2.

A free group is a group with generating set S and no word made up of the elements of S forms the

identity element of the group apart from the identity element itself. Equivalently, a free group is a

group whose presentation is of the form G “ xS,Hy. We say that a free group is of rank n if its

generating set has cardinality n. Every free group is made up of equivalence classes of words, where

two words are equivalent if one can be reduced to form the other word. The free group of rank n is

unique upto isomorphism and will be denoted by Fn.

Another important concept that we discuss in this report is the notion of a free-product of groups.

Given two groups G1 and G2, the free product of G1 and G2 denoted G1 ˚G2, is the group containing

equivalence classes of all words formed from the elements of the two original groups and two words

are considered equivalent if one can be reduced to the other. The group G1 ˚ G2 is always infinite

even if the original groups are finite (except for the case when one of the groups is trivial). Despite

its name, the free product of two groups is not a free group unless the two original groups are free.

However, the group G1 ˚ G2 is the ’freest’ group containing both G1 and G2 as subgroups. We will

see later that there is a duality between free products of groups and free products of graphs.
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Cayley Graphs

Let G be a groups with presentation G “ xS|Ry where S is the set of generators for the group G and

R is the set of relations as discussed earlier. The Cayley graph of the G with respect to the generating

set S, denoted ΓSpGq, is the graph with vertex set G and two vertices g1, g2 P G have a directed

edge between them (from g1 to g2) if there exists some s P S such that g1s “ g2. However, in this

paper, we assume that the generating set S for the Cayley graph is closed under inverses and does

not contain the identity. In this case where the generating set is closed under inverses, we can drop

off the directions on the edges.

A simple example is the Cayley graph of the group Zn which forms the cyclic graph on n vertices

denoted Cn with respect to the generating set t1u. A more interesting example is the Cayley graph

of the free group F2 which forms an infinite tree as pictured below:

Cayley graph of the free group F2
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