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Abstract

Similar to the wave function representation of states of quantum mechanics, the con-

tinuous variable Wigner function is a similar but more intuitive representation and is very

useful in the fields of quantum information and quantum computing. Over the last few

decades, scientists such as William K. Wootters (1987) have created a discrete-variable

Wigner function (representing states of discrete systems) using ad hoc approaches, leading

to many different definitions of such a function. A subset of such definitions however have

a commonality being that they are only initially defined over prime dimensions (systems

that have a prime number of total possible states). To extend this definition to non-prime

dimensions, extra work implementing complex mathematical methods are required. In

this work, we aim to define a universal discrete-variable Wigner function which would

be defined for all possible dimensions. We attempt to accomplish this task by imple-

menting our coarse grain mapping method to the continuous-variable Wigner function

of Gottesman, Kitaev, and Preskill (GKP) encoded states; these are continuous systems

which represent information of a discrete system. This methodology has been shown to

be consistent with the results obtained by Wooters for the first seven prime dimensions. I

conjecture that this method works for all prime d and checking this claim is left to future

work.

1 Introduction

The continuous-variable (CV) Wigner function is a quasiprobability distribution – i.e., it sat-

isfies all conditions for a probability distribution except positivity, and it represented in phase-

space[9] – i.e., the multidimensional space of position and momentum required to specify the

state of the system for a CV system. A discrete-variable (DV) Wigner function has been defined

for qudits – i.e., d-dimensional quantum systems, by many scientists[3][5][6][7][8] over the decades

such as William K. Wooters[3] in 1987. However, many functions such as these are only initially

defined for a subset of all possible dimensions – i.e., they are only initially defined for prime

and infinite dimensional systems.

Gottesman, Kitaev, and Preskill (GKP) developed a method[2] for representing information

of a discrete system within a continuous system. The wave functions of these GKP-encoded

states are a Dirac comb – i.e., they are a regularly spaced comb of Dirac deltas and consequently
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are doubly periodic – i.e., periodic in both the position and momentum representations. This

leads to a conclusion that the logical subspace of the state has a natural toroidal symmetry in

these variables.

To define a quasiprobability-description of DV systems, we will apply the CV Wigner func-

tion to GKP-encoded states. This is a way of filling the gap in the currently available state

representations of DV systems. It is possible to do this since the CV Wigner function works

for any CV state – including a GKP-encoded qudit of any dimension. This is in contrast to a

subset of previously defined DV Wigner functions, which are only initially defined for a subset

of all possible dimensions (primes).

In this project, we take the tools that we know work – i.e., GKP encoding and the CV

Wigner function – and apply them to a DV system. We then look for patterns relating our

description to the known DV Wigner function. In doing so, we have found that what we call

a ‘coarse grain mapping’ method to be a possible link to defining a DV Wigner function from

the CV Wigner function of GKP-encoded states.

1.1 Statement of Authorship

Lucky K. Antonopoulos developed the Mathematica codes to generate the CV Wigner functions

of GKP-encoded d-dimensional states as well as Wootters’ DV Wigner function, worked through

the algebra in section 2.5.1, began work on developing a generalised analytic expression for a

DV Wigner function using the coarse graining method, discussed and interpreted his findings

and wrote this report.

A/Prof Nicolas Menicucci is Lucky’s supervisor and was also the one who suggested the

coarse graining method which he noted for qubits as a possible mapping technique for higher

dimensional systems.

2 Theory

2.1 The wave function representation

To talk about the Wigner representation of a system in physics, we must first introduce one

of the most common ways of describing the state of a physical in system and that is the wave
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function representation. The wave function is a complex valued probability amplitude which

has the property that when you take the square of the magnitude, you get real valued, measure

able probabilities. As an example, the wave function, ψ(x), for a particle in one dimension is

calculated from Schrödinger’s equation[4] which is a 2nd order differential equation of the form

−}2

2m
∂2ψ

∂x2 = i}
∂ψ

∂t
(1)

where } is the reduced Planck’s constant, m is the mass of the particle, x and t are the

position and time respectively, and i is the imaginary unit. (This is the time dependant version

of Schrödinger’s equation.)

2.2 The continuous-variable Wigner representation

With the wave function in hand, the CV Wigner function can be defined. This function was

first defined in a paper by Eugene Wigner in 1932[1]. Unlike the wave function representation

– which is complex valued, the CV Wigner function is real valued, and it is defined in phase-

space. Phase-space is a useful tool in that it can provide physical intuition about the system as

opposed to wave function representation which is complex valued and difficult to distill intuition

from. Another property that differs between the two representations is that where as the wave

function can only define pure states (and hence superposition states), a Wigner function can

define both pure and mixed states of a quantum system, which is a great feature to have at

hand. The CV Wigner function for a pure state is defined as

W (q,p) = 1
π}

∫ ∞
−∞

dy ψ∗(q+y)ψ(q−y)e
2ipy
} (2)

where the asterisk denotes complex conjugation, q and p are the quadratures of position

and momentum, and y is just the integration variable.

2.3 Distilling intuition for phase-space and a qudit and its dimen-

sionality

I would like to briefly provide an example here to help with building an intuition of what

phase-space exactly is and for what a qudit and its dimensionality might be. For intuition, the

easiest way to visualise phase-space is by considering a swinging pendulum as shown in figure
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1, where both the position and momentum of the pendulum can be described by a single point

in phase-space.

Figure 1: The state of a continuous-variable system – a pendulum (pink), described by a point

(red) on a phase-space diagram.[10]

In quantum physics, there are quantum physical systems which we call qudits; these are

quantum systems with a particular dimensionality. The dimensionality, d, of a system is the

number of possible states it can have. As an example, a classical coin flip has 2 possible states,

heads and tails, and therefore is a 2-dimensional classical system (a bit). For the quantum

analog, we could, for example have a single electron with its spin property either being aligned

along the positive or negative z-axes – i.e., up or down along z; this is one such quantum

equivalent of the classical bit is referred to as a qubit (a quantum bit).

The main difference between a classical a quantum system is that whereas classical systems

are defined by there states, quantum systems can be in superpositions of their defining states.

2.4 A discrete-variable Wigner representation

As already mentioned, a DV Wigner function describes the state of a discrete physical system.

However, the interesting aspect to note about these functions is that there are many ad hoc

mathematical definitions by many scientists over the decades. A common (and interesting)

feature among some these definitions (such as Wootters’ DV Wigner function[3]) is that they

are only initially defined for systems with prime dimensions, or systems with infinite dimensions

(which would then define a continuous system). There are then extra mathematical methods

implemented to alter the function’s properties to define them for non-prime dimensional sys-

tems. Therefore, we see that there there is a gap in the definition of DV Wigner functions
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which doesn’t allow for a singular, unique DV Wigner function to be defined, let alone for any

d-dimensional system.

2.4.1 Wootter’s discrete-variable Wigner function

One of the first DV Wigner functions was defined by William K. Wooters in 1986[3]; this

function is defined in equation (3)

W d
α = 1

d
tr(ρ̂Âα) (3)

where we have the value of the DV Wigner function for a particular coordinate α := (a1,a2)

for a d-dimensional system, where ρ̂ is the density operator which defines the state of the

system and Â is the phase point operator which is a d×d matrix defined for each coordinate

and is defined in equation (4)

Aα, jk = δ2a1,j+k e
2iπ
d a2(j−k) (4)

where j and k are the jth and kth row and column respectively of the d×d matrix, and δ is a

Dirac delta. (Note that the product 2α1 and the sum j+k are both modulo d.)

As an example, the DV Wigner function for a 2-dimensional qudit (a qubit) as defined by

Wootters is shown in figure 2.

Figure 2: The |0〉 state and |1〉 state of definite position for a 2-dimensional qudit. The values

shown represent the value of the point coordinates, indicated by the tick marks. (Note that

the horizontal axis is in position and the vertical axis is in momentum.

Interestingly, similar to the CV Wigner function, the DV Wigner function produces mea-

surable probabilities when one integrates over a line i.e., sums the values over a line. As an
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example, figure 3 shows that to get a measurable probability for position of the |0〉 state or |1〉

state of a qubit, you sum over the values of the opposite quadrature and indeed each state has

a unique, definite position with 100% certainty.

Figure 3: The |0〉 state and |1〉 state of definite position for a 2-dimensional qudit. The values

shown represent the value of the point coordinates, indicated by the tick marks. The red lines

show which values are summed over to get measurable probabilities (numbers indicated in red)

for position.

2.5 GKP-encoded states

Gottesman, Kitaev, and Preskill (GKP) defined a method of encoding a qubit in an oscillator

– i.e., representing information, such as the state of a discrete system within a continuous

system, specifically the harmonic oscillator; we call these types of states GKP-states[2]. The

wave function of the jth state of a d-dimensional GKP-state is a Dirac comb which is a sum

of equally spaced Dirac deltas in position and momentum and they are defined using Dirac

notation as shown in equations (5) and (6) respectively.

ψd
|j〉

(q,p) := |α(j+ds)〉q =
∞∑

s=−∞
δ(q−αj−αds) (5)

ψd
|j〉

(q,p) :=
∣∣∣∣2πdα(j+dt)

〉
p

=
∞∑

t=−∞
δ(p− 2π

dα
j− 2π

α
t) (6)

where α =
√

2π
d and is defined as the spacing between spikes (each Dirac delta) and j is the

jth state of the system where j ∈ {0,1, ..,d−1}; in the wave function j acts as some horizontal
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shift of j×α. (Note that the subscript q on the ket indicates that it is an eigenstate in the

position basis.)

2.5.1 Derivation of the continuous-variable Wigner function of GKP-encoded qu-

dits

To obtain the CV Wigner function of a GKP-encoded qudit, such as those defined in equations

(5) and (6), we substitute their wave function into the general CV Wigner function defined in

equation (2). Using the position state as in equation (5) and substituting we get equation (7),

a form of the CV Wigner function of a GKP-encoded qudit.

W d
|j〉

(q,p) = 1
π

∫ ∞
−∞

dy
∞∑

s=−∞
δ(q+y−αj−dαs)

∞∑
t=−∞

δ(q−y−αj−dαt)e2iyp (7)

where we have set } equal to 1, and changed one of the summation indices so we can keep track

of them explicitly. Next, using the property that Dirac deltas are defined at a single horizontal

point, and that we can commute an integral and summation for linear functions, which we

have, we can integrate by simply setting one of the Dirac deltas’ arguments to zero (here we

take the delta summed over t) to get equation (8).

y = q−αj−dαt (8)

Doing so sets this delta equal to 1 (the total area under the delta) where we now make use of

equation (8) by substituting it back into equation (7) to get equation (9)

W d
|j〉

(q,p) = 1
π

∞∑
s,t=−∞

δ(2q−2αj−dαt−dαs)e(2q−2αj−2dαt)ip (9)

where we now choose to work on the Dirac delta and exponential terms separately so we can

simplify our expression further. First, we arm ourselves with the Poisson summation relation

(equation (10)) and use it to change the Dirac delta into a sum of exponentials. This allows us

to split the exponential into multiple exponentials where we get nice simplifications
∞∑

s=−∞
δ(x− sT ) =

∞∑
n=−∞

1
T
e2πix nT (10)

and so from equation (9) we can set x = 2q− 2αj−dαt and T = dα and begin simplifying as

follows:
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∞∑
s=−∞

δ(2q−2αj−dαt−dαs) =
∞∑

s=−∞

1
dα
e2πi sdα (2q−2αj−dαt)

=
∞∑

s=−∞

1
dα
e2πi(2q−2αj) s

dα e−2πits

where

e−2πits = (e−2πi)ts = (1)ts = 1

and so
∞∑

s=−∞
δ(2q−2αj−dαt−dαs) =

∞∑
s=−∞

1
dα
e2πi(2q−2αj) s

dα

Now, setting x= 2q−2αj and T = dα we get the simplification of our delta term which is
∞∑

s=−∞
δ(2q−2αj−dαt−dαs) =

∞∑
s=−∞

δ(q−αj− dα2 s) (11)

As for the exponential term from equation (9), we again use the Poisson summation except this

time to turn it into a delta functions as follows:
∞∑

t=−∞
e(2q−2αj−2dαt)ip

=
∞∑

t=−∞
e2ip(q−αj) e−2diαtp

=
∞∑

t=−∞
e2ip(q−αj) π

1
π
e−2iπ(dαp) tπ

and then using the Poisson summation one last time with x= dαp and T = π, we arrive at the

simplification that
∞∑

t=−∞
e(2q−2αj−2dαt)ip = π

∞∑
t=−∞

e2ip(q−αj)δ(p− π

dα
t) (12)

Substituting equations (11) and (12) into equation (9) we get

W d
|j〉

(q,p)≈
∞∑

s,t=−∞
δ(q−αj− dα2 s)δ(p− π

dα
t)e2ip(q−αj) (13)

The final simplification we now make is by using the property of the Dirac delta, which is

that it is non-zero when its argument is equal to zero, we can get equations for q and p, to

substitute into the last remaining exponential.
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q = αj+ dα

2 s

p= π

dα
t

and so by substitution into

e2ip(q−αj)

we get

= e2i( πdα t)((αj+
dα
2 s)−αj)

= eπist

= (−1)st (14)

Finally, substituting equation (14) into equation (13) we get our final form of the CV Wigner

function of a d-dimensional GKP-state, which is a sum of deltas and is

W d
|j〉

(q,p)≈
∞∑

s,t=−∞
(−1)stδ(q−αj− dα2 s)δ(p− π

dα
t) (15)

which is the expression defined in the paper by Gotteseman, Kitaev and Preskill[2]

3 Methodology

3.1 The continuous-variable Wigner function of GKP-encoded qu-

dits

With the general form of the CV Wigner function of a general GKP-encoded qudit (equation

(15)), we can now begin to plot them on a phase-space diagram, where we may distil some

important properties. Figures 4 and 5 show plots for a qubit (d= 2) and qutrit (d= 3).

3.1.1 Important properties

According to equation 15, the point values of the CV Wigner function are equal to either ±1

and given the fact that these values represent probabilities, it is useful to normalise them. To

do this, we sum each value along the first column of the |0〉 state and require that it sums to

1; this is because the system has been chosen to have a definite position and so the probability
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Figure 4: The CV Wigner function of definite position for a GKP-encoded 2-dimensional qudit.

We have the |0〉 state (left) where j = 0 and |1〉 state (right) where j = 1. Each point is

normalised to a value of ±1
4 (sign dependant on phase).

Figure 5: The CV Wigner function of definite position for a GKP-encoded 3-dimensional qudit.

We have |0〉 state (left) where j = 0, |1〉 state (middle) where j = 1 and |2〉 state (right) where

j = 2. Each point is normalised to a value of ±1
6 (sign dependant on phase).

of a measurement of position must be 1. For example, each red point in figure 4 is worth +1
4 ,

and each blue point is worth −1
4 . Likewise, each red point in figure 5 is worth +1

6 , and each

blue point is worth −1
6 . This pattern leads to the rule that the points are normalised to values

as 1
2d . (Note as well that each tick mark signifies a valid coordinate of the Wigner function and

that no dot means the value is zero).

The other property to note is the j parameter. As can be seen in equation (15), the j

parameter always translates each point to the right by two tick marks, which corresponds to a

translation of α After d shifts, the Wigner function is back in it’s |0〉 state as the defined unit
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cell is periodic; that is, the the unit cell has a toroidal topology.

Finally, it is interesting to note that the number of points horizontally is always two whereas

the number of point vertically is always equal to 2d, giving a total number of non-zero points

equal to 4d.

3.2 Coarse grain mapping

The notion of coarse graining the CV Wigner function of GKP-encoded states is easy to un-

derstand and I have been able to show that it produces the correct DV Wigner function when

compared to Wootters’ version for the first seven prime dimensions.

To coarse grain, we first section off our unit cell into a grid of d2 boxes where each box

always contains four points. Then it is as simple as adding the value of each of the four points,

per box. As an example, lets look at a qutrit system. Taking the plots from figure 5, we coarse

grain by drawing a grid on top to produce figure 6.

Figure 6: The CV Wigner function of definite position for a GKP-encoded 3-dimensional qudit

with initial a coarse grained grid drawn on top. Each point is normalised to a value of ±1
6 (sign

dependant on phase). We have the |0〉 state (left) where j = 0, |1〉 state (middle) where j = 1

and |2〉 state (right) where j = 2.

Then by summing each box’s points, not forgetting the zero points at particular tick-mark

coordinates, we arrive at figure 7 which looks identical to that of Wootters’ DV Wigner function

for the 3 states of a qutrit.
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Figure 7: A DV Wigner function from the coarse grained CV Wigner function of definite

position for a GKP-encoded 3-dimensional qudit. This is also identical to Wootter’s DV Wigner

function. We have the |0〉 state (left) where j = 0, |1〉 state (middle) where j = 1 and |2〉 state

(right) where j = 2.

The coarse grain mapping method has been shown to work for the first seven prime dimen-

sions by comparison to Wootters’[3] work and I conjecture that this method works for all prime

d; checking this claim is left to future work.

4 Conclusion

By comparison to William K. Wooters’ work on defining a discrete-variable Wigner function

for discrete systems, we have provided a method called coarse grain mapping which I have

shown successfully maps the continuous-variable Wigner function of GKP-encoded qudits to

an equivalent discrete-variable Wigner function as defined by Wooters for the first seven prime

dimensions. As Wooters’ discrete-variable Wigner function, as well as the many other definitions

of such representations, are only initially defined for prime dimensional systems, our method

aims to provide a universal discrete-variable Wigner function for a d-dimensional system.

It is my conjecture that the coarse grain mapping method works for all prime d and checking

this claim is left to future work. This includes defining a mathematical definition of the coarse

grain mapping method and showing that we can obtain the appropriate discrete-variable Wigner

function for any d-dimensional system in comparison to the many other defined discrete-variable

Wigner functions.
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