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1 Abstract

As machine learning algorithms become increasingly widespread, it is essential that rigorous
stress-testing frameworks become foundational to algorithm development and application. A
diverse collection of data is necessary for in-depth analysis of algorithm performance . However,
recent work has shown that current repositories do not meet these requirements. In particular,
classi cation datasets fail to separate ML classi ers by performance. Popular algorithms per-
form similarly well or similarly poorly on commonly used test instances, thus, a test instance
space lacks the discriminatory ability necessary for thorough algorithm testing. This paper
discusses a method to create discriminating classi cation datasets that would increase the di-
versity and breadth of a test instance space. Genetic algorithms are employed to tackle the

task of data generation which is structured as a multi-objective optimisation problem.

2 Introduction

Recent decades have seen large advancements in the development and application of machine
learning (ML) algorithms. Objective performance evaluation of ML techniques is now of
paramount importance in justifying their real-world use as we start to increasingly rely on
them for Al-based automated systems. Worryingly, potential inadequacies in the current ac-
cepted methodology for testing classi cation algorithms have been been reported for over a
decade now (Salzberg (1997); Munoz et al. (2018))

Recent work has shown that current repositories fail to adequately separate classi ers by
performance, often times multiple algorithms perform similarly well. Standard practice recom-
mends classi ers are tested on a well-studied collection of classi cation datasets, i.e. from the
UCI repository, KEEL repository. Opposers to such practice raise concerns about over-tuning
algorithm development to a set of test-instances that may not be representative of the larger
population of classi cation problems; ‘the UCI repository is a very limited sample of prob-
lems, many of which are quite easy for a classi er’ (Salzberg (1997)). Popularity of the UCI
repository, and consequently, over-reliance on its test instances is potentially problematic as
new algorithms may be developed with bias towards the known properties of the UCI datasets

(Munoz et al. (2018)). For unbiased evaluation of classi ers, and improved understanding, a



more diverse and expansive test instance space is required. When such a space is absent, it
must be created.

In this paper, we focus particularly on generating datasets that are capable of discrimi-
nating algorithms by performance. In essence, we are interested in statistical and information
theoretical qualities of datasets that may suggest suitability of particular classi cation algo-
rithms. With this in mind, a methodology is developed to generate idealised arti cial test data
instances designed to be suited to speci c algorithms.

As a preliminary step binary classi cation tasks from the UCI repository are modi ed
through iterative class re-labelling, attempting to drive the di erence in classi cation accuracy
between a given pair of algorithms higher. A multi-objective tness function searching for
maximum di erence in algorithm accuracy is fed into a genetic algorithm. Speci cally, NSGA-
Il (Deb et al. (2002)) and MOEA/D (Zhang & Li (2007)) are used.

The natural next step is to generate datasets from scratch. This is structured as a two-step
optimisation process. In the rst step, a data structure is generated via searches for optimal
Gaussian Mixture Model (GMM) parameters. The dataset produced through sampling from
the GMM parameter vector is then superimposed with a class label vector, again sought out

via GA optimisation.

3 Preliminaries

3.1 Instance Space

Recent work done by Smith-Miles and Munoz establish the motivating backdrop for the current
investigation. The 2017 paper, \Instance Spaces For Machine Learning Classi cation" (Munoz
et al. (2018)) investigates creating a 2-dimensional projected space that embeds classi cation
datasets as points in an instance space. The utility of the space is that it allows visualisation
of collections of datasets and visual separation indicates diverging statistical and information
theoretical properties within collections. Crucially, the instance space is constructed to reveal
hard and easy instances, and enable strengths and weaknesses of individual classi ers to be

identi ed.
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Figure 1: Overall performance of the algorithm portfolio, with the best algorithm for each
instance shown in (a), while b shows blue marks representing -easy instances, and red marks

representing -hard instances - Munoz et al. 2017

Applied to the well established UCI repository, it was found that current test instances are
inadequate in discriminating algorithms by performance. Often, algorithms perform similarly
well or similarly poorly on existing test instances.

The initial purpose of this paper is to demonstrate a viable method for adjusting existing
classi cation datasets so they are more discriminating. Binary classes are re-weighted and
relabelled so a particular algorithm is favoured in classi cation tasks. The Haberman dataset

(UCI) is chosen as a proof of concept.

3.2 NSGA-II

NSGA-II (Non-dominated Sorting Genetic Algorithm) (Deb et al. (2002)) will drive the opti-
misation task. A genetic algorithm (GA) is a metaheuristic inspired by the processes of natural
selection that seeks optimal values for an objective function. In a GA, a population of candi-
date solutions is adjusted over many generations (iterations), to evolve toward better solutions;
solutions with higher tness (better solutions to objective function). Like in natural selection,
‘ tter’ individuals are carried over to the next generation. In addition, mutation and crossover
operators reestablish population diversity in future generations. NSGA-II is a multi- objective

GA chosen for its low computational complexity and elitist approach.



3.3 Machine Learning Algorithms

We consider a portfolio of 7 popular supervised learning algorithms. The algorithms are Naive
Bayes (NB), Linear Discriminant (LDA), Quadratic Discriminant (QDA), Classi cation and
Regression Trees (CART), k-Nearest Neighbor (KNN) and Support Vector Machines with linear
and radial basis kernels (L-SVM, and RB-SVM respectively). NB and CART are expected to
give uncorrelated errors while providing a good diversity of classi cation mechanisms (Lee &
Giraud-Carrier (2013)); LDA and QDA are expected to further extend the diversity of the

algorithm portfolio, whereas KNN and SVM are considered because of their popularity.

3.4 Gaussian Mixture Modelling

In statistics, a mixture model is a probabilistic model for representing the presence of sub-
populations within an overall population, without requiring that an observed data set should
identify the sub-population to which an individual observation belongs
Multivariate Gaussian Mixture models are considered in this paper. However, rather than
tting a mixture model to our data, we sample from a mixture model to generate a desirable

data set. See Methodology section for explanation.

4 Haberman Methodology

We structure the task of generating discriminating datasets as a multi-objective optimisation
problem. The objectives in this case concern the classi cation accuracies of chosen algorithms.
Optimising these objectives drives the di erence in performance of chosen algorithms higher.
The initial moments of this paper will discuss a manipulation of the Haberman dataset (UCI)

(Dua & Gra (2017)) as a small scale proof of concept of the proposed methodology.

4.1 Haberman Dataset

The initial purpose of this research is to demonstrate a viable method for adjusting existing
classi cation datasets so they are more discriminating. Binary classes are re-weighted and

relabelled so a particular algorithm is favoured in classi cation tasks. The Haberman dataset



concerns cases from studies conducted on the survival of patients who had undergone surgery

for breast cancer. It has 3 attributes, 1 class attribute (survival) and 306 observations.
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Figure 2: Principal Component Projection of Haberman Dataset

The Haberman dataset is one of 300+ UCI repository datasets considered in the 2017
paper by Munoz et al. It is chosen for this initial problem due to its small size; hence low
computational complexity for the optimisation task, and as it displays the symptoms of the UCI
repository discussed earlier. Indeed, looking at ML algorithm performance on the Haberman

dataset, we see our suite of algorithms performing similarly.

Naive Classification SVM SVM
Bayes LDA QDA Tree KNN Linear Radial

0.7488508  0.7508211 0.7410481 0.7397184 07037183 0.7211404 0.7322043

Figure 3: Classi cation accuracy after 10-fold cross-validation

4.2 Optimisation

Pairwise competition between two di erent ML algorithms drives the optimisation of the Haber-
man dataset. For a chosen pair, the aim is to maximise accuracy of one algorithm while min-
imising the accuracy of the other by relabelling the binary ‘Survival’ class via NSGA-II. The

objective being minimised, i.e. the multi-objective tness function, is given below:

F(X) = (fi(x) = ERalgorithm 1; f2(X) =1  ERother)
subject to x 2 [0; 1N



Here x refers to the class label vector of the Haberman dataset with N being the number
of observations. As this a a binary class dataset, the search space for x is restricted to [0; 1]N.
ERaigorithm refers to the error rate of our desired algorithm, ERner indicates the error rate of
the discriminated algorithm

Due to the implementation of NSGA-II in R (MCO package, Mersmann 2014) being a
real-valued solver, a bit string approach (1’s and 0’s representing the two classes) was not
possible. Fitness function implementation in R, therefore, had to be structured to overcome
this incapability. Given a class vector X, each value X;, was assigned to class ‘1’ if 0 x; 0:5
and class ‘2" if 0:5 < x; 1. The * tness’ of a candidate solution is computed after 10-fold
cross validation.

NSGA-II was initialised with a population size of 100 and was run for 100 generations. The

nal population after GA can be expressed as an objectives plot as below:

The objectives plot displays the tness values of

the nal population after running GA. From this
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Figure 4. NSGA-II Objectives Plot Select member closest in Euclidean dis-
tance to ( 1;0:5)

The ideal class labelling of the Haberman dataset for the chosen pairwise competition is then
determined. Next steps include visualisation of the new dataset via PCA and in an \instance

space".



4.3 Haberman Results

For each pair of ML algorithms, the GA optimisation methodology outlined above is imple-
mented. The table below indicates the di erence in classi cation accuracy, (f; +f;), for a

given algorithm pair after running GA and choosing an improved class labelling

Naive Bayes LDA QDA Classification Tree KNN SVMLinear SVM Radial
Maive Bayes 0.00000000 | 032612926 @ 0.33039674 037556150 030285618  0.30408718 028198253
LDA 028780752 0.00000000  0.29754658 033467232 034982411  0.09768625  0.35835349
QDA 0.03335558 | 0.27102995  0.00000000 0.24896274 025102823  0.28101575  0.29868534
Classification Tree 010373331 012476757  0.16394185 0.00000000 018181799  0.07952772  0.13083009
KNN 023231855 0.26872312 019541157 022260753 000000000 0.19900955  0.20191949
SVM Linear 023085029 0.05735076  0.24525839 035336022 028433560 0.00000000 029723674
SVM Radial 0.07508737 011511170  0.13659542 039528342 025584376 009526882  (0.00000000

Figure 5. Results from pairwise competition For each cell in the table, the column name (in
bold) indicates the algorithm whose performance was maximised, and row name the algorithm

whose performance was minimised

As evident, certain pairs of ML algorithms are di cult to separate in terms of cross-validated
accuracy through class relabelling. Indeed, algorithms inherently similar in their classi cation
strategies can be expected to perform comparably on new data. Thus optimisation is less
successful. As an example consider SVM Linear and LDA. Both seek to nd a linear boundary
between two classes. Although the methodology each employ is vastly di erent it is not adverse
to think simply altering the class labelling of the Haberman dataset is insu cient to separate
the two in performance. This is re ected in the pairwise competition table above.

Moving forward, the above set was reduced to 3 pairs to explore further and con rm viability of
the GA method. Three members from the nal GA population; the ideal solution, the solution
with maximum f; and the solution with minimum f;., were visualised using PCA of a relabelled

Haberman dataset.






