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Abstract

This report aims to understand the role of microRNA and Argonaute, combined to RISC,

during post-transcription on the production of protein. It modifies the Klironomos and Berg model

(Klironomos & Berg, 2013) as well as Nyayanit and Gadgil model (Nyayanit & Gadgil, 2015).

In the Nyayanit and Gadgil model, a counter-intuitive result is obtained, where increasing the

microRNA concentration increases the concentration of protein produced. It is investigated further

whether the result is due to the translation of the mRNA - RISC complex that is taken into account

in the model.

1 Introduction

1.1 Biological background

Protein is known as the building block of life. It is an essential component of various parts of our

body, from head to toe. To obtain it, our body has a protein factory inside our cells. Like any other

items that we make, we need a recipe to produce protein. The recipe is stored in a molecule called

DNA. DNA is two strands twisted around each other in the form of double helix. It is located in the

nucleus of the cell. Sometimes, the two strands unwind. When it does, the process of replication and

transcription may take place.

Replication is the process whereby DNA makes copies of itself, whereas transcription is when DNA

produces mRNA, also known as messenger RNA. mRNA brings the information from the DNA out

of the nucleus to the ribosome, where protein is made. Therefore, mRNA is needed to transport the

information. In the ribosomes, the information in mRNA is translated into protein in the process of

translation. One of the factors that determine the rate of protein production is the rate of translation.

When there is more mRNA available, there is more translation taking place hence more protein

produced.

However, protein production is also regulated at the post-transcription stage. Post-transcription is

the time in between transcription and translation. Following transcription, mRNA may bind to RISC,

RNA Induced Silencing Complex. RISC is made of Argonaute and microRNA. Argonaute is a protein

itself and is the active part of the RISC. microRNA is a class of regulators in post-transcriptional

regulation (Nyayanit & Gadgil, 2015). The combination of mRNA and RISC is not unique so that one

mRNA can bind to several different RISCs and vice versa (Nyayanit & Gadgil, 2015). When mRNA

binds to RISC, there will be less mRNA to produce protein. Hence, the conventional picture is that if

there is more microRNA, there will be more RISC and less mRNA, and as a result, there will be less
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Figure 1: Diagram of protein production (Mesuere, 2016)

protein. This report aims to understand further whether more microRNA always means less protein

produced, when the various binding steps and competition between microRNAs is taken into account.

1.2 Mathematical background

In this report, I am concerned with reactions between various species. Hence, I begin by introducing

the theory underpinning the mathematical models of these processes, based on my supervisor’s lecture

notes (Green, 2012).

1.2.1 Law of Mass Action

The Law of Mass Action is a mathematical model which describes the rate of change of concentration

of the reactants and products in a chemical reaction. It states that the change in concentration of

product is proportional to the product of the concentrations of the reactants. If we have the reaction

A+B
k−→ C,

the rate of change of the concentration of product C is given by

dc

dt
= kab,
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where k is a reaction constant and a, b, c are the concentrations of A,B,C respectively. If we have a

reversible reaction

A+B
k1


k2
C,

the rate of change of each substance is given by

dc

dt
= k1ab− k2c,

da

dt
= k2c− k1ab,

db

dt
= k2c− k1ab,

where k1 and k2 are reaction constants.

1.2.2 Steady States

Let dx
dt = f(x). A steady state, fixed point, or equilibrium of a differential equation are the values of

x such that
dx

dt
= 0⇔ f(x) = 0.

If we start close to a steady state x∗, we might want to know if we will move towards or away from it.

It is explained by the stability of each steady state. To be able to determine the stability of steady

states, there are three possible scenarios. In these scenarios, δx means that we move the x value by a

little and see what happens to the value of x.

• If df
dx < 0, then x is decreasing for δx > 0 and increasing for δx < 0 so the system moves back

towards x∗. Therefore, x∗ is stable.

• If df
dx > 0, then x is increasing for δx > 0 and decreasing for δx < 0 so the system moves further

away from x∗. Therefore, x∗ is unstable.

• If df
dx = 0, then x∗ is stable from one direction and unstable from another. It is also known as

semi-stable fixed point.

1.2.3 Systems of Ordinary Differential Equations

If we have more than one Ordinary Differential Equations (ODEs), we need to set all of the equations

to be zero to obtain a steady state. For example, if we have x1 and x2, we need

dx1

dt
= f1(x1, x2) = 0 and

dx2

dt
= f2(x1, x2) = 0.
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If we have linear system
dx1

dt
= λ1x1 and

dx2

dt
= λ2x2,

we can write the ODEs in the form of a matrix,

d

dt

x1

x2

 =

λ1 0

0 λ2

x1

x2


or equivalently

dx

dt
=

λ1 0

0 λ2

x.

In this case, λ1 and λ2 are eigenvalues of the 2x2 matrix. The eigenvalues of the matrix can determine

the stability of the steady states:

• λ1 > 0, λ2 > 0 is unstable node,

• λ1 > 0, λ2 < 0 is a saddle,

• λ1 < 0, λ2 < 0 is stable node.

This is a simple method to calculate the stability of steady state of a small system (n = 2 in this case).

However, for larger values of n, it is a complicated process. Instead, we can investigate the stability

of steady states numerically.

1.2.4 Nonlinear Systems

If the system is nonlinear, we can linearise the system about the steady state. Consider the system

dx1

dt
= f1(x1, x2) and

dx2

dt
= f2(x1, x2),

where f1 and f2 are continuously differentiable functions.

Let (x̄1, x̄2) be a steady state of the system such that

f1(x̄1, x̄2) = f2(x̄1, x̄2) = 0.

Let ε� 1 and have

x1(t) = x̄1 + εz1(t), x2(t) = x̄2 + εz2(t),

where z1(t) and z2(t) are small deviations from the system. The Taylor expansions of f1 and f2 around

(x̄1, x̄2) is

f1(x̄1 + z1, x̄2 + z2) = f1(x̄1, x̄2) + εz1
∂f1

∂x1

∣∣∣
x̄1,x̄2

+ εz2
∂f1

∂x2

∣∣∣
x̄1,x̄2

+O(ε2),

f2(x̄1 + z1, x̄2 + z2) = f2(x̄1, x̄2) + εz1
∂f2

∂x1

∣∣∣
x̄1,x̄2

+ εz2
∂f2

∂x2

∣∣∣
x̄1,x̄2

+O(ε2),
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or

f(x̄ + εz) = f(x̄) + εJ(x̄)z +O(ε2),

where J is the Jacobian matrix of f at the steady state (x̄1, x̄2). Since x̄ is a steady state, f(x̄) = 0.

Since
dx1

dt
= ε

dz1

dt
,
dx2

dt
= ε

dz2

dt
,

at leading order, the system becomes

d

dt

z1

z2

 =

f1x1
f1x2

f2x1
f2x2

z1

z2

⇔ dz

dt
= J(x̄)z,

where z = (z1(t), z2(t))T and J is the Jacobian matrix of f = (f1, f2)T .

Now the nonlinear system has been reduced to linear system about the steady state. We can use the

same technique of looking at the eigenvalues of J(x̄) to determine the stability of the steady state.

This conditions where the stability of nonlinear system can be determined by linearisation is described

in the following definition and theorem.

Definition: The steady state (x̄1, x̄2) is called hyperbolic if all eigenvalues of the Jacobian J(x̄1, x̄2)

have nonzero real part.

Theorem (Hartman-Grobman): Assume that (x̄1, x̄2) is a hyperbolic equilibrium. Then, in a small

neighbourhood of (x̄1, x̄2) the phase portrait of the non-linear system

dx1

dt
= f1(x1, x2) and

dx2

dt
= f2(x1, x2)

is equivalent to that of the linearised system.

However, as mentioned above, we can investigate the stability of steady states of large system numer-

ically since the process gets complicated with large values of n.

2 Statement of Authorship

I discussed and developed the mathematical models with my supervisor. I modified the Matlab code

provided by my supervisor to solve the differential equation models and find steady states. I wrote

the Matlab code to plot the steady states when changing the values of the parameters. I explored

different values of parameters of the model and discussed the appropriate values with my supervisor.

I interpreted the graphs and wrote this report. This report is then proofread by my supervisor.
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3 Mathematical model for a single microRNA

I now present our mathematical model for post-transcriptional gene regulation. I begin by considering

one microRNA. The following notation is in number of species per cell unit volume, used to represent

the concentration of substances.

• m represents concentration of microRNA,

• A represents concentration of Argonaute,

• Am represents concentration of Argonaute-microRNA (RISC),

• R represents concentration of mRNA (messengerRNA),

• P represents concentration of protein,

• c represents concentration of complex formed by RISC and mRNA.

3.1 Klironomos and Berg Model, 2013

The Klironomos and Berg model (Klironomos & Berg, 2013) has equations representing the reactions

with single microRNA, as shown in black below. It takes into account microRNA, Argonaute, RISC,

mRNA, and protein. The rate of change of concentration of RISC is the negative of Argonaute since

the total amount of A and Am is constant. The model does not consider the complex formed by RISC

and mRNA, which I added to the model as shown in red.

As seen in the model, I have included decomposition of the complex, dcc, as well as the decay of

the complex, lcc. The decomposition of the complex is when the complex dissociates to RISC and

mRNA whereas the decay of the complex is degradation of the complex. In the model I include a

term representing the translation of the complex (the bP c term) though biologically it is not clear if

this happens in practice.
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dm

dt
= km︸︷︷︸

production of m

− dmm︸ ︷︷ ︸
degredation of m

− kAmA︸ ︷︷ ︸
production of RISC

+ dAAm︸ ︷︷ ︸
decay of RISC

(1)

dAm

dt
= −dA

dt
= kAmA︸ ︷︷ ︸

production of RISC

+ dAAm︸ ︷︷ ︸
decay of RISC

− dRmAmR︸ ︷︷ ︸
binding RISC to R

+ dcc︸︷︷︸
decomposition of complex

(2)

dR

dt
= kR︸︷︷︸

production of R

− dRR︸︷︷︸
decay of R

− dRmAmR︸ ︷︷ ︸
decay due to binding to RISC

+ dcc︸︷︷︸
decomposition of complex

(3)

dP

dt
= kPR︸︷︷︸

translation of P

− dPP︸︷︷︸
decay of P

+ bP c︸︷︷︸
translation of complex

(4)

dc

dt
= dRmAmR︸ ︷︷ ︸

production of complex

− dcc︸︷︷︸
decomposition of complex

− lcc︸︷︷︸
decay of complex

(5)

3.2 Method

Equations (1) to (5) are non-dimensionalised to reduce the number of parameters, giving Equations

(6) to (10). The scale for A and Am is the constant A0, where A0 = A + Am, the total amount

of Argonaute and RISC. For the other variables, I nondimensionalise them as follows, with tilde

indicating dimensionless equations:

T =
1

kAA0
t̃ , m =

dA
kA
m̃ , (A,Am) = A0(Ã, Ãm) , R =

kR
dR
R̃ , P =

kPkR
kAA0dR

P̃ , c =
dRmkR
kAdR

c̃.

This gives the following model equations (dropping tildes):

dm

dt
= δ1 − δ2m−m(1−Am) +Am (6)

dAm

dt
= −dA

dt
= α1[m(1−Am)−Am]− α2AmR+ α3c (7)

dR

dt
= β1(1−R)− β2AmR+ β3c (8)

dP

dt
= R− ψ1P + ψ2c (9)

dc

dt
= AmR− γ1c− γ2c (10)

where

δ1 =
km
dAA0

, δ2 =
dm
kAA0

, α1 =
dA
kAA0

, α2 =
dRmkR
kAA0dR

, α3 =
dcdRmkR
k2
AA

2
0dR

,

β1 =
dR
kAA0

, β2 =
dRm

kA
, β3 =

dcdRm

k2
AA0

, ψ1 =
dP
kAA0

, ψ2 =
bcdRm

kAkP
, γ1 =

dc
kAA0

, γ2 =
lc

kAA0
.
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Figure 2: Solution of modified KB 2013 model

As it is not possible to solve the system above analytically, I used Matlab to plot numerical solutions

to the differential equations. Using the ode45 solver as a built-in function of Matlab, I plotted the

results into a graph as shown in Figure 2 using the parameter values in Table A. The graph shows

that the concentration of each substances reach a steady state at some point. Hence, I wrote another

code to find all of the steady states of the model. This is done by solving the equations when set to

zero, using the built-in function solve. Then I varied the values of δ1 to be 0.1, 2.1 and 4.1. The values

of α2 = β2 is varied between 1 and 2 with interval of 0.5. The values of ψ2 = 0.005 and γ2 = 0.1 was

set and other parameter values are shown in Table A. The steady states were plotted in Figure 3.

3.3 Results

As time increases, the concentration of each of the substances reaches a steady state as shown in

Figure 2. Hence, the steady states were explored further. As I changed the values of the formation

of the complex, the steady states changes. This can be seen in Figure 3. There are two steady states

visible for each rate of formation of microRNA. One of each pair of steady states has negative protein

concentration. Exploring on those steady states, I found that they are unstable steady states so that

it will not be observed in real life. This aligns with the fact that negative concentration is impossible

to achieve in experiments.
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Figure 3: Steady states of modified KB model

As the formation of the complex increases, the general trend is that the concentration of protein

decreases. However, there is a spike visible when the formation rate is around 1 to 1.2. This shows

that the increase in the formation of complex actually increases the protein produced. However, these

steady states turns out to be unstable. Therefore, it cannot be observed in experiments.

4 Mathematical model for two microRNAs

After exploring the model for one microRNA, now I will explore the model when there are two

microRNAs in the system.

4.1 Nyayanit and Gadgil Model, 2015

The Nyayanit and Gadgil model (Nyayanit & Gadgil, 2015) considers the possibility of having two

microRNAs in the system, as shown in Equations (11) to (16). However, it does not take into account

Argonaute and RISC. It assumes that the microRNA combines directly with the mRNA, producing

the complexes c1 and c2. The Nyayanit and Gadgil model also assumes that there still can be trans-

lation occuring even though the messenger RNA has combined with the RISC, expressed by b1 and

b2. However, these values are set to be very low, since, as described earlier, it is not clear biologically

if translation of the complex can occur in practice.
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dm1

dt
= km1︸︷︷︸

production of m1

− dm1m1︸ ︷︷ ︸
degradation of m1

− k1Rm1︸ ︷︷ ︸
binding m1 to R

+ dc1c1︸ ︷︷ ︸
decomposition of complex 1

(11)

dm2

dt
= km2︸︷︷︸

production of m2

− dm2m2︸ ︷︷ ︸
degradation of m2

− k2Rm2︸ ︷︷ ︸
binding m2 to R

+ dc2c2︸ ︷︷ ︸
decomposition of complex 2

(12)

dR

dt
= kR︸︷︷︸

production of R

− dRR︸︷︷︸
decay of R

− k1Rm1︸ ︷︷ ︸
binding m1 to R

− k2Rm2︸ ︷︷ ︸
binding m2 to R

+ dc1c1︸ ︷︷ ︸
decomposition of complex 1

+ dc2c2︸ ︷︷ ︸
decomposition of complex 2

(13)

dP

dt
= kPR︸︷︷︸

translation of P

− dPP︸︷︷︸
decay of P

+ b1c1︸︷︷︸
translation of complex 1

+ b2c2︸︷︷︸
translation of complex 2

(14)

dc1

dt
= k1Rm1︸ ︷︷ ︸

production of complex 1

− dc1c1︸ ︷︷ ︸
decomposition of complex 1

− lc1c1︸︷︷︸
decay of complex 1

(15)

dc2

dt
= k2Rm2︸ ︷︷ ︸

production of complex 2

− dc2c2︸ ︷︷ ︸
decomposition of complex 2

− lc2c2︸︷︷︸
decay of complex 2

(16)

Modifiying the code used for Klironomos and Berg model, I recreated Figure 4 as shown in the Nyayanit

and Gadgil paper, Figure 4B (Nyayanit & Gadgil, 2015). The Nyayanit and Gadgil model has a counter

intuitive result where increasing the concentration of microRNA actually increases the concentration

of protein produced for certain parameter values as shown in Table B (Nyayanit & Gadgil, 2015).

This is not expected since we expect more microRNA will give less mRNA for translation and hence

less protein produced.

Now I consider the Nyayanit and Gadgil model without the translation of the complex by setting b1

and b2 to zero. The values of the other parameters are the same as Figure 4. This produces Figure 5.

Similar trend to Figure 4 is observed, where increasing the rate of formation of microRNA increases

the protein production. However, the values of p/pref has increased drastically from around 5 to

around 2000. This is due to the fact that the value of pref decreases significantly.

4.2 Modified Nyayanit and Gadgil Model, 2015

The Nyayanit and Gadgil model is modified to include the Argonaute and RISC, with the modifica-

tions from the original model highlighted in red, as shown in Equation (17) to (24).
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Figure 4: Steady states of NG model

Figure 5: Steady states of NG model, no translation of complex
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dm1

dt
= km1︸︷︷︸

production of m1

− dm1m1︸ ︷︷ ︸
degradation of m1

− kA1m1A︸ ︷︷ ︸
binding m1 to A

+ dA1Am1︸ ︷︷ ︸
decomposition of Am1

(17)

dm2

dt
= km2︸︷︷︸

production of m2

− dm2m2︸ ︷︷ ︸
degradation of m2

− kA2m2A︸ ︷︷ ︸
binding m2 to A

+ dA2Am2︸ ︷︷ ︸
decomposition of Am2

(18)

dAm1

dt
= kA1m1A︸ ︷︷ ︸

binding m1 to A

− dA1Am1︸ ︷︷ ︸
decomposition of Am1

− dRm1Am1R︸ ︷︷ ︸
binding Am1 to R

+ dc1c1︸ ︷︷ ︸
decomposition of complex 1

(19)

dAm2

dt
= kA2m2A︸ ︷︷ ︸

binding m2 to A

− dA2Am2︸ ︷︷ ︸
decomposition of Am2

− dRm2Am2R︸ ︷︷ ︸
binding Am2 to R

+ dc2c2︸ ︷︷ ︸
decomposition of complex 2

(20)

dR

dt
= kR︸︷︷︸

production of R

− dRR︸︷︷︸
decay of R

+ dc1c1︸ ︷︷ ︸
decomposition of complex 1

+ dc2c2︸ ︷︷ ︸
decomposition of complex 2

− dRm1Am1R︸ ︷︷ ︸
binding Am1 to R

− dRm2Am2R︸ ︷︷ ︸
binding Am2 to R

(21)

dP

dt
= kPR︸︷︷︸

translation of P

− dPP︸︷︷︸
decay of P

+ b1c1︸︷︷︸
translation of complex 1

+ b2c2︸︷︷︸
translation of complex 2

(22)

dc1

dt
= dRm1Am1R︸ ︷︷ ︸

production of complex 1

− dc1c1︸ ︷︷ ︸
decomposition of complex 1

− lc1c1︸︷︷︸
decay of complex 1

(23)

dc2

dt
= dRm2Am2R︸ ︷︷ ︸

production of complex 2

− dc2c2︸ ︷︷ ︸
decomposition of complex 2

− lc2c2︸︷︷︸
decay of complex 2

(24)

Equations (17) to (24) are nondimensionalised as follows, with tilde indicating dimensionless equa-

tions:

T =
1

kA1A0
t̃ , m1 =

dA1

kA1

m̃1 , m2 =
dA2

kA2

m̃2 , (A,Am1 , Am2) = A0(Ã, ˜Am1 ,
˜Am2) , R =

kR
dR
R̃ ,

P =
kPkR

kA1A0dR
P̃ , c1 =

dRm1kR
kA1dR

c̃1 , c2 =
dRm2kR
kA2dR

c̃2.
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This gives the following model equations (dropping tildes):

dm1

dt
= δ11 − δ12m1 −m1(1−Am1 −Am2) +Am1 (25)

dm2

dt
=
kA2

kA1

(
δ21 − δ22m2 −m2(1−Am1 −Am2) +Am2

)
(26)

dAm1

dt
= −dA1

dt
= α11[m1(1−Am1 −Am2)−Am1 ]− α12Am1R+ α13c1 (27)

dAm2

dt
= −dA2

dt
=
kA2

kA1

(
α21[m2(1−Am1 −Am2)−Am2 ]− α22Am2R+ α23c2

)
(28)

dR

dt
= β1(1−R)− β12Am1R− β22Am2R+ β13c1 + β23c2 (29)

dP

dt
= R− ψ1P + ψ12c1 + ψ22c2 (30)

dc1

dt
= Am1R− γ11c1 − γ12c1 (31)

dc2

dt
=
kA2

kA1

(
Am2R− γ21c2 − γ22c2

)
(32)

where

δ11 =
km1

dA1A0
, δ12 =

dm1

kA1A0
, δ21 =

km2

dA2A0
, δ22 =

dm2

kA2A0
,

α11 =
dA1

kA1A0
, α12 =

dRm1kR
kA1A0dR

, α13 =
dc1dRm1kR
k2
A1
A2

0dR
, α21 =

dA2

kA2A0
, α22 =

dRm2kR
kA2A0dR

, α23 =
dc2dRm2kR
k2
A2
A2

0dR
,

β1 =
dR

kA1A0
, β12 =

dRm1

kA1

, β22 =
dRm2

kA1

, β13 =
dc1dRm1

k2
A1
A0

, β23 =
dc2dRm2

kA1kA2A0
,

ψ1 =
dP

kA1A0
, ψ12 =

b1dRm1

kA1kP
, ψ22 =

b2dRm2

kA2kP
, γ11 =

dc1
kA1A0

, γ12 =
lc1

kA1A0
, γ21 =

dc2
kA2A0

, γ22 =
lc2

kA2A0
.

Equations (25) to (32) are solved using ode45 in Matlab and the steady states are plotted in

Figure 6. The values of the parameters are given in Table C, whereas α12 = β12 = α22 = β22 are

varied between 1 to 2 with step size 0.05. There are four steady states visible in the graph. Increasing

the formation of microRNA complex rate decreases the concentration of protein as expected. This

does not reflect the results from the Nyayanit and Gadgil model.

There are negative values for the steady state of the protein in Figure 6. The stability of these steady

states has been examined and they are unstable. Hence, these steady states will not be observed in

experiments, which aligns with the fact that negative concentration is not physically feasible.

To explore the modified Nyayanit and Gadgil model, the rate of formation of microRNA complex

of the second microRNA is doubled so that δ21 = 4.2. The other parameter values are set to be the

same as Figure 6, giving Figure 7. There are five steady states visible on the graph with same trend

as Figure 6. However, it can be seen that the values are more spread out.
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Figure 6: Steady states of modified NG model

Figure 7: Steady states of modified NG model, second miRNA complex formation rate doubled
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5 Discussion and Conclusion

In this project I have learned about modelling chemical reactions, specifically using the Law of Mass

Action. It models the rate of change of concentration of product proportional to the concentration

of reactants. Also, I have learned about the stability of Ordinary Differential Equations (ODEs) and

simulating them in Matlab.

I have looked through the Klironomos and Berg model (Klironomos & Berg, 2013), as well as

the Nyayanit and Gadgil model (Nyayanit & Gadgil, 2015). The Klironomos and Berg model was ex-

tended to have two microRNAs in the system whereas the Nyayanit and Gadgil model was extended to

include Argonaute and RISC. When simulating the extended Klironomos and Berg model, I found the

counter-intuitive result, where increasing the microRNA concentration increases the protein produc-

tion. However, when explored further, the steady states are unstable. Hence, it cannot be observed in

experiments. Looking through the Nyayanit and Gadgil model, similar results occured in the original

model. However, the steady states are stable in this case, meaning that it can be observed when doing

experiments. Yet, when the Nyayanit and Gadgil model was modified to include the Argonaute and

RISC, the result was not observed for the parameter values we considered.

In the original Nyayanit and Gadgil model, it is questionable whether or not the translation of

the complex is possible. However, when the translation of the complex is set to be zero, the counter-

intuitive result was still observed. The next step of this project would be to investigate thoroughly the

parameter values that causes the counter-intuitive result to occur. This will enrich our understanding

on the behaviour of microRNA, Argonaute and RISC, as well as expand possible utilizations of them.
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Appendices

A Parameter value for Figure 2

Parameter Value

δ1 2.1

δ2 1.2

α1 1.2

α2 1

α3 0.1

β1 1.2

β2 1

β3 0.1

ψ1 0.6

ψ2 0.01

γ1 0.1

γ2 0.01
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B Parameter value for Figure 5

Parameter Value

km1 , km2 1

dm1 , dm2 0.0025

k1, k2 0.2943

dc1 , dc2 0.0208

kR 2

dR 0.002

kP 0.01

dP 0.001

b1, b2 0.001

lc1 , lc2 0.00228
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C Parameter value for Figure 6

Parameter Value

δ11 2.1

δ21 2.1

δ21 1.2

δ21 1.2

α11 1.2

α21 1.2

α13 0.1

α23 0.1

β11 1.2

β21 1.2

β13 0.1

β23 0.1

ψ1 0.6

ψ12 0.01

ψ22 0.01

γ11 0.1

γ21 0.1

γ21 0.01

γ22 0.01
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