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Abstract

Malaria is an infectious disease with an immense global health burden. Plasmodium vivax is the most geographically-

widespread species of malaria. Relapsing infections are a critical feature of the epidemiology of Plasmodium

vivax, augmenting the difficulty of treatment, elimination and control. Relapses also have important conse-

quences for the acquisition of immunity, allowing immunity to be gained relatively rapidly, even in areas of low

transmission. Previous efforts to model blood-stage immunity to vivax malaria in transmission settings have

been limited. In this project, a stochastic within-host model for blood-stage immunity to vivax malaria has been

developed. A moment generating function for blood-stage immunity has been derived in a general framework, al-

lowing parameters of epidemiological interest to be extracted for a broad range of biologically-relevant scenarios.

Introduction

The global malaria burden is immense, with an estimated 216 million cases and 445,000 deaths globally in 2016

(WHO, 2017). The primary pathogens responsible for human malaria are Plasmodium falciparum and Plasmod-

ium vivax. As the most geographically widespread species of human malaria, Plasmodium vivax contributes to

a significant proportion of the malaria burden beyond sub-Saharan Africa, causing 64% of malaria cases in the

Americas, 30% in South East Asia and 50% in the Eastern Meditteranean (WHO, 2017). Historically neglected

as a benign form of malaria, Plasmodium vivax has received far less scientific attention than Plasmodium fal-

ciparum However, associations between Plasmodium vivax and severe disease have become apparent in recent

years (Naing, 2014). Control and elimination strategies designed for Plasmodium falciparum are not always

applicable to Plasmodium vivax (Howes et al, 2016) Relapsing infections, in particular, exacerbate the difficulty

of treating, eliminating and controlling Plasmodium vivax.

Parasite Lifecycle

Like all species of malaria, the transmission of Plasmodium vivax is mediated by Anopheles mosquito vectors.

During a blood meal, an infected mosquito vector will inject sporozoites into the bloodstream of a human host.

Sporozoites will then travel to the liver and invade individual liver cells (Mueller et al, 2013). Within a liver cell,

a sporozoite has two possible fates: it may develop into either an active liver schizont, or a dormant hypnozoite.

An active liver schizont will rupture within a period of 5 to 8 days, giving rise to a primary infection (Mueller et

al, 2013). A hypnozoite, in contrast, will remain dormant for an indeterminate period but may cause a relapse

upon activation (Mueller et al, 2013). Each infected mosquito bite thus gives rise to a single primary infection,

and a variable number of relapses that can be spread apart quite far in time. Both primary infections and

relapses involve the circulation of blood-stage parasites in the host bloodstream.

Immunity

Immunity is gained through cumulative exposure to parasite antigens. Immunity, however, also decays in the

absence of exposure; regular antigenic exposure is required to maintain high levels of immunity (Mueller et

al, 2013). There is an emerging consensus that acquired immunity to Plasmodium vivax is largely targeted
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at blood-stage parasites, and is thus contingent on primary infections and relapses (Mueller et al, 2013). Re-

lapsing infections thus have important consequences for the acquisition of immunity, allowing immunity to be

gained rapidly even with low levels of mosquito transmission (Mueller et al, 2013). Blood-stage immunity can

be thought to modulate both parasite levels and the risk of clinical symptoms such as fever during blood-stage

infection.

Modelling Immunity to Plasmodium vivax

Efforts to model blood-stage immunity to Plasmodium vivax in transmission settings have been limited. Within-

host models simulating the interactions of parasite and human cells have been developed to understand mecha-

nisms of blood-stage immunity to Plasmodium vivax (McQueen and McKenzie, 2008; Kerlin and Gatton, 2015).

Transmission blocking immunity, which reduces the probability of mosquitoes picking up parasites from infected

humans, has been examined in transmission settings (De Zoysa et al, 1991). However, we are unaware of an

existing within-host model that considers the gain of blood-stage immunity over a lifetime in an endemic re-

gion. In this project, we have developed a stochastic within-host model of blood-stage immunity to Plasmodium

vivax for an individual in an arbitrary transmission setting. Our model of immunity is governed by two comple-

mentary dynamics: immunity is boosted with every infection experienced, but is also subject to decay over time.

Modelling Relapses as an Infinite Server Queue

During 2018, working with my supervisors on a voluntary basis, I developed a within-host model for the cumu-

lative number of relapses experienced by an individual. The premise of the model is to conceptualise relapses as

a MX
t /G/∞ queue (Eick, Massey and Whitt, 1991; Holman, Chaudhry and Kashyap, 1982). Mosquito bites,

which constitute the arrival process, are modelled as a compound, non-homogenous Poisson process, allowing

for variations in the bite rate and the number of hypnozoites conferred with each bite. Hypnozoites remain

in the queue whilst dormant, and leave the queue upon activation. Service times, which represent hypnozoite

dormancies, are informed by an underlying model of hypnozoite activation adapted from White et al (2014). By

studying the departure process of our queue, we can track the number of relapses experienced by an individual

over time. The observation that the departure process for the MX
t /G/∞ queue is a filtered Poisson process

(Holman, Chaudhry and Kashyap, 1982) has underpinned the analysis of our model of blood-stage immunity.

Analysis

We develop a within-host model for blood-stage immunity to Plasmodium vivax progressively, beginning with

a model for mosquito bites. We devise a model for the activation of a single hypnozoite, and then extend our

model to consider relapses arising from a single bite. We then model the immunity gained from a single bite

conferring a known number of hypnozoites, before extending our analysis to immunity gained from a stream of

mosquito bites, each of which confers a variable number of hypnozoites.
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Mosquito Bites

We model mosquito bites as a compound nonhomogeneous Poisson process. We assume bites occur at a time-

dependent rate λ(t), allowing us to account for seasonality and environmental changes. The mean number of

bites in the interval [0, t) is

m(t) =

∫ t

0

λ(τ)dτ

We also allow for variation in the number of hypnozoites conferred by each bite. Similarly to White et al (2014),

we assume that the number of hypnozoites N conferred by each bite is geometrically-distributed with mean ν.

Hence, the probability of a bite containing n hypnozoites is

Pr(N = n) = gn =
1

ν + 1

( ν

ν + 1

)n

We treat the arrival processes of bites conferring different numbers of hypnozoites to be statistically indepen-

dent. Bites conferring exactly n hypnozoites are therefore modelled to follow a Poisson distribution with rate

parameter gnλ(t) given by the product of the overall bite rate λ(t) and the probability gn of a bite containing

n hypnozoites.

Hypnozoite Activation

We begin by modelling the activation of a single hypnozoite. We adapt the model of hypnozoite activation

developed by White et al (2014) in which hypnozoites undergo a latency phase before they are susceptible to

activation. Similarly to White et al (2014), we model this latency phase as an Erlang distribution with rate

parameter δ and k compartments, as shown in Figure 1. The variance in the length of the latency phase can

be decreased by increasing the number of compartments k. The expected length of the latency phase is k/δ.

During the latency phase, we assume a constant death rate µ for each hypnozoite, either due to the death of

the hypnozoite itself or the host liver cell (White et al, 2014). We model activation to occur at a constant

rate α once a hypnozoite reaches the final compartment of the latency phase (White et al, 2014). In contrast

to White’s model, we allow hypnozoites established through the same mosquito bite to proceed through the

compartments of the latency phase independently. This overcomes an issue in White’s model, whereby progress

through the latency phase was enforced to be in ’lock step’ for hypnozoites from the same mosquito bite.

Figure 1: Schematic for model of activation for a single hypnozoite
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Let pm(t) be the probability that a hypnozoite is in compartment m of the latency phase at time t; pactive(t) be

the probability that a hypnozoite has relapsed into a blood infection at time t and pdeath(t) be the probability

that the hypnozoite death has occurred by time t. Then we obtain the set of differential equations describing

the state of a single hypnozoite time t after inoculation

dp1
dt

= − (µ+ δ)p1(t) (1)

dpm
dt

= − (µ+ δ)pm(t) + δpm−1(t), m ∈ [2, k − 1] (2)

dpk
dt

= − (α+ µ)pk(t) + δpk−1(t) (3)

dpactive
dt

= αpk(t) (4)

dpdeath
dt

= µ

k∑
i=1

pi(t) + µpactive(t) (5)

When a mosquito bite occurs, we assume each hypnozoite starts in the first compartment of the latency phase,

yielding initial conditions

p1(0) = 1, pc(0) = pactive(0) = pdeath(0) = 0 for c > 1 (6)

We solve system (1)-(5), with initial conditions (6) iteratively using integration by parts

pm(t) =
(δt)m−1

(m− 1)!
e−(µ+δ)t for m ∈ [1, k − 1]

pk(t) = e−(µ+α)t δk−1

(k − 2)!

∫ t

0

t′k−2e(α−δ)t′dt′

pactive(t) =
αδk−1

(k − 2)!

∫ t

0

e−(µ+α)t′
∫ t′

0

t′′k−2e(α−δ)t′′dt′′dt′

pdeath(t) = 1−
k∑

i=1

pi(t)− pactive(t)

(7)

Figure 2 shows the probability of activation for a single hypnozoite with a long latency period, parameterised

using values taken from White et al (2014).

Figure 2: Probability of activation for a single hypnozoite with δ = 0.2 day−1, k = 36, α = 1/325 day−1, µ =

1/442 day−1. Parameters have been taken from White et al (2014).
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Infections for a Single Bite

Consider a single bite conferring n hypnozoites. Define Jn(t) and In(t) to be random variables describing the

number of relapses and infections time t after the bite. Since the incubation period of a primary infection is

expected to be substantially shorter than the latency period for a relapse (White and Imwong, 2012), we assume

that a primary infection is developed immediately after the bite. Hence

In(t) = Jn(t) + 1

Suppose that hypnozoite dormancies are independent and identically-distributed (i.i.d.) with distribution

B(t) = pactive(t) = probability hypnozoite has activated by time t

given by our within-host model for hypnozoite activation (7). We have replaced pactive(t) with B(t) for notational

convenience. Then it follows that

Jn(t) ∼ Binomial(B(t), n)

Since In(t) is a linear combination of a binomial random variable Jn(t), the moment generating function (MGF)

for this system is

E[eIn(t)] = e(1−B(t) +B(t)es)n (8)

where the factor of e comes from the addition of the primary infection. We have thus characterised the

probability distribution for the number of infections In(t) arising time t after a bite conferring n hypnozoites,

given hypnozoite dormancies are i.i.d. with distribution B(t).

Immunity for a Single Bite

The acquisition of blood-stage immunity is driven by exposure to blood-stage parasites. Continuous and regular

exposure is required to maintain high levels of immunity; in the absence of recent exposure, immunity can be

lost (Mueller et al, 2013). Here, we treat the cumulative number of blood infections experienced by a host as a

metric for exposure.

Define γn(t) to be a random variable describing the gain in antiparasite immunity time t after a single bite

conferring n hypnozoites. We propose

γn(t) = ηe−t/bIn(t)

We assume immunity increases linearly with each primary infection or relapse at a constant rate η. Immunity

is also subject to exponential decay at a rate governed by parameter b. As a first approximation, we model

immunity for any given mosquito bite to decay from the time of the mosquito bite (or primary infection). A

simulated sample path is shown in Figure 3.

5



Figure 3: Simulated sample path for a single mosquito bite with n = 10 hypnozoites. The top graph tracks

the decrease in the hypnozoite reservoir due to death or activation. Two hyonozoites die before activating, but

the remaining eight hypnozoites activate to cause relapses, as shown in the middle graph. The bottom graph

tracks the immunity γ10(t)/η gained from infections arising due to the bite. Immunity is boosted with every

primary infection or relapse, and decays exponentially at rate b = 5 year−1 from the time of the mosquito bite.

Our model of hypnozoite activation (7) has been simulated using the Gillespie algorithm (Kojima, 2012).

Since γn(t) is a linear combination of the random variable In(t) with MGF (8), we deduce the MGF of γn(t)

E[eγn(t)] = exp (se−t/bη)
(
1−B(t) +B(t) exp (se−t/bη)

)n

(9)

We have now characterised the probability distribution for immunity γn(t) gained time t after a single bite

conferring n hypnozoites, given immunity is boosted linearly at rate η with every primary infection or relapse,

and decays exponentially at rate b. We have assumed hypnozoite dormancies are i.i.d. with distribution B(t)

given by an underlying within-host model.

Immunity for Fixed n

Let {Φn(t), t > 0} be the stochastic process pertaining to the acquisition of immunity from bites conferring

exactly n hypnozoites. Recall that bites conferring exactly n hypnozoites follow a Poisson process with rate

gnλ(t), where λ(t) is the overall bite rate and gn is the probability of a bite containing n hypnozoites.

We assume that immunity is additive across bites. Let τ1, τ2, τ3... denote bite times and Nn(t) denote the number

of bites in the interval [0, t); these are governed by a nonhomogeneous Poisson process with rate gnλ(t). The

immunity contribution at time t from a mosquito bite with n hypnozoites occuring at time τm is described by the

random variable γn(t− τm) with MGF given by equation (9), where we additionally define γn(u) = 0 ∀u < 0.

The overall gain in immunity from bites conferring exactly n hypnozoites Φn(t) time t after birth is therefore

given by

Φn(t) =

Nn(t)∑
m=1

γn(t− τm) (10)
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We identify (10) as a filtered Poisson, or shot noise process (Parzen, 1999). Figure 4 illustrates a simulated

sample path.

Figure 4: Simulated sample path for immunity and infection arising from bites conferring exactly n = 10

hypnozoites, given bites conferring n = 10 hypnozoites follow a nonhomogeneous Poisson process of rate

g10λ(t) = 0.0025 + 0.0015sin(2πt/365) and immunity for each bite decays at rate b = 5 year−1. The graph

at the top tracks the number of blood infections experienced over time, with each colour representing a differ-

ent bite. The graph at the middle shows the gain in immunity, described by the random variable γ10/η, for

each individual bite; immunity is boosted with each infection, and decays exponentially from the time of the

bite. The bottom graph depicts the overall gain in immunity Φ10/η over time from birth, given by the sum of

the immunity contributions for individual bites. The underlying model of hypnozoite activation (7) has been

simulated using the Gillespie algorithm, while mosquito bites, which follow a nonhomogenous Poisson process,

have been simulated using a thinning process (Lewis and Shedler, 1979).

We now derive the MGF for Φn(t), generalising the framework developed by Parzen (1999, pp. 153-155) for a

time-inhomogeneous case.

We begin by noting that

E[eΦn(t)] =

∞∑
k=0

E[eΦn(t)|Nn(t) = k] · Pr[Nn(t) = k]

The mean number of bites conferring n hypnozoites in the interval [0, t) is gnm(t), where gn is the probability

of a bite containing exactly n hypnozoites and m(t) is the mean number of bites in the interval [0, t). Since

bites follow a nonhomogenous Poisson process

Pr[Nn(t) = k] =
[gnm(t)]ke−gnm(t)

k!
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Given one arrival in the interval [0, t), the probability of the arrival occurring in the interval (τ, τ + dτ) is

λ(τ)dτ

m(t)

Define U to be the random variable with PDF

pu(τ) =
λ(τ)

m(t)
, τ ∈ [0, t)

Then, given k arrivals in the interval [0, t), the conditional distribution of the arrival times 0 < τ1 < τ2 < ... <

τk ≤ t is equivalent to the distribution of k ordered, independent random variables, each distributed as U . For

any real s1, ..., sk satisfying 0 ≤ s1 < s2 < ... < sk ≤ t, by considering the order statistics U(1), ..., U(k), we can

write the joint distribution

fτ1,...,τk(s1, ..., sk) = k!

k∏
j=1

pu(sj) =
k!

m(t)k

k∏
j=1

λ(sj)

We define

ψ(s1, ..., sk) = E[eΦn(t)|N(t) = k, τ1 = s1, ..., τk = sk]

= E
[
exp

( k∑
j=1

γn(t− sj)
)]

=

k∏
j=1

E[eγn(t−sj)]

Therefore, we note

E[eΦn(t)|Nn(t) = k] =

∫ t

0

ds1

∫ t

s1

ds2...

∫ t

sk−1

dskΦ(s1, ..., sk)fτ1,...,τk(s1, ..., sk)

=
k!

m(t)k

∫ t

0

ds1λ(s1)

∫ t

s1

λ(s2)ds2...

∫ t

sk−1

λ(sk)dskΦ(s1, ..., sk)

=
1

m(t)k

∫ t

0

ds1λ(s1)

∫ t

0

λ(s2)ds2...

∫ t

0

λ(sk)dskΦ(s1, ..., sk)

since Φ(s1, ..., sk) is a symmetric function of its arguments.

It follows that

E[eΦn(t)|Nn(t) = k] =
[ 1

m(t)

∫ t

0

λ(τ)E[eγn(t−τ)]dτ
]k

We can thus determine the MGF for Φn(t) in terms of the MGF for γn(t)

E[eΦn(t)] =

∞∑
k=0

[gnm(t)]ke−gnm(t)

k!
·
[ 1

m(t)

∫ t

0

λ(τ)E[eγn(t−τ)]dτ
]k

= e−gnm(t)
∞∑
k=0

1

k!

[
gn

∫ t

0

λ(τ)E[eγn(t−τ)]dτ
]k

= exp
{
gn

∫ t

0

λ(τ)(−1 + E[eγn(t−τ)])dτ
}
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Substituting the MGF for γn(t) (9), we have

E[eΦn(t)] = exp
{
gn

∫ t

0

λ(τ)
[
− 1 + exp (se−(t−τ)/bη)

(
1−B(t− τ) +B(t− τ) exp (se−(t−τ)/bη)

)n]
dτ

}
(11)

Equation (11) provides a description for the probability distribution of Φn(t), the overall gain in immunity from

bites conferring exactly n hypnozoites time t after birth. Given a bite rate of λ(t) and a probability gn of a bite

containing n hypnozoites, we have modelled model bites conferring n hypnozoites to occur at rate gnλ(t). We

have assumed that immunity is additive across bites. For a single bite, we assume immunity is boosted by η for

each primary infection or relapse experienced, as well as decaying exponentially at rate b from the time of the

mosquito bite. We have taken hypnozoite dormancies to be i.i.d. with distribution B(t)

Immunity for Variable n

Let {Φ(t), t > 0} be the stochastic process pertaining to the overall acquisition of immunity. Modelling immunity

to be additive across bites, the overall gain in immunity Φ(t) is given by the sum of the immunity contributions

Φn(t) for bites conferring exactly n hypnozoites, i.e.

Φ(t) =

∞∑
n=0

Φn(t)

A simulated sample path is shown in Figure 5.

We now make the assumption that immunity is gained independently for each bite. Then the random variables

describing immunity gained cumulatively from bites conferring known numbers of hypnozoites, Φ1(t),Φ2(t),Φ3(t)...

can be treated as independent. We compute the MGF for Φ(t) as a product of the MGFs for Φn(t) (11)

E[eΦ(t)] =

∞∏
n=0

E[eΦn(t)]

=

∞∏
n=0

exp
{
pn

∫ t

0

λ(τ)
[
− 1 + exp (se−

t−τ
b η)

(
1−B(t− τ) +B(t− τ) exp (se−

t−τ
b η)

)n]
dτ

}
= exp

{ ∞∑
n=0

pn

∫ t

0

λ(τ)
[
− 1 + exp (se−

t−τ
b η)

(
1−B(t− τ) +B(t− τ) exp (se−

t−τ
b η)

)n]
dτ

}
= exp

{∫ t

0

λ(τ)
[
− 1 +

exp (se−
t−τ
b η)

N + 1

∞∑
n=0

[ N

N + 1

(
1−B(t− τ) +B(t− τ) exp (se−

t−τ
b η)

)]n]
dτ

}

We note that our MGF is well-defined given

N

N + 1

(
1−B(t− τ) +B(t− τ) exp (se−

t−τ
b η)

)
< 1 ⇔ B(t− τ)[exp (se−

t−τ
b η)− 1] < 1/N

with N > 0, η > 0, t − τ ≤ 0, B(t − τ) ∈ [0, 1]. If B(t − τ) = 0, then our inequality holds. Otherwise, we can

equivalently write

s <
1

η
e

t−τ
b log

(
1 +

1

NB(t− τ)

)
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Figure 5: Simulated sample path for immunity and infection in an endemic region with sinusoidal bite rate

λ(t) = 0.0025+0.0015sin(2πt/365). The number of hypnozoites per bite is geometrically distributed with mean

ν = 10, and immunity for each bite decays at rate b = 5 year−1. The graph at the top tracks the number of

blood infections experienced over time, with each colour representing a different bite. The graph at the middle

shows the gain in immunity for each individual bite, described by the random variable γn/η, where n is the

number of hypnozoites conferred by that bite. The bottom graph depicts the overall gain in immunity Φ/η over

time from birth, given by the sum of the immunity contributions for individual bites. The underlying model

of hypnozoite activation (7) has been simulated using the Gillespie algorithm (Kojima, 2012), while mosquito

bites, which constitute a nonhomogenous Poisson process, have been simulated using a thinning process (Lewis

and Shedler, 1979).

Noting that e
t−τ
b ≥ 1 and 1

B(t−τ) ≥ 1, we deduce

1

η
e

t−τ
b log

(
1 +

1

NB(t− τ)

)
>

1

η
log

(
1 +

1

N

)
So our MGF is well-defined ∀t given

s <
1

η
log

(
1 +

1

N

)
and, in this domain, we have

E[eΦ(t)] = exp

{∫ t

0

λ(τ)

[
− 1 +

exp (se−
t−τ
b η)

1 + νB(t− τ)[1− exp (se−
t−τ
b η)]

]
dτ

}
(12)

Since the MGF for Φ(t) is well-defined in an open interval around s = 0, we can compute the moments of the

probability distribution for Φ(t).

We begin by computing the expectation value of Φ(t)

E[Φ(t)] =
∂

∂s
E[eΦ(t)]

∣∣∣
s=0

= η

∫ t

0

λ(τ)e−
t−τ
b (1 + νB(t− τ))dτ (13)
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We also determine the variance of Φ(t)

Var[Φ(t)] =
∂2

∂s2
E[eΦ(t)]

∣∣∣
s=0

−
( ∂

∂s
E[eΦ(t)]

∣∣∣
s=0

)2

=η

∫ t

0

λ(τ)e−
2(t−τ)

b [η +NB(t− τ)(1 + 2η + 2ηN)]dτ−

η2
[ ∫ t

0

λ(τ)e−
t−τ
b (1 +NB(t− τ))dτ

]2
(14)

We have now characterised the expected value and variance for blood-stage immunity given a time-dependent

bite rate λ(t). We have modelled the number of hypnozoites conferred per bite to follow a geometric distri-

bution with mean N , and modelled hypnozoite dormancies to be i.i.d. with distribution B(t). We assumed

that immunity is gained independently and additively for infections arising from different bites. For a given

mosquito bite, immunity is boosted by η for each primary infection or relapse, and decays exponentially at rate

b from the time of the bite.

Numerical Results

We have developed a general model of exposure-dependent immunity to vivax malaria. We have assumed immu-

nity is gained independently for different bites, and is, furthermore, additive across bites. Immunity is boosted

with each primary infection or relapse, and is also subject to exponential decay over time. By modulating the

inoculation rate, we can account for seasonal and environmental changes. We will now examine several cases of

biological interest.

Endemic Regions

Consider an individual who remains in an endemic region for a lifetime, and is thus continually at risk of

mosquito inoculation. We account for seasonality in inoculation rates, given mosquito transmission is higher

in summer than winter in temperate regions, by considering a sinusoidal bite rate, as shown in Figure 6. The

graph on the left depicts the seasonally-varying bite rate, while the graph on the right depicts the expected

immunity profile of an individual who remains in the region for a lifetime.

Figure 6: Expected immunity level E[Φ(t)/η] given a sinusoidal bite rate λ(t) = 0.0025 + 0.0015sin(2πt); a

mean of ν = 10 hypnozoites per bite and immunity for each bite decaying at rate b = 10 year−1.
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Our model predicts that immunity is gained rapidly in childhood due to the combined effect of relapses and

primary infections. However, there is a kink in the immunity profile in early childhood since there is a period

during which only primary infections can occur: although the hypnozoite reservoir can start to be established

from birth, there is a delay before relapsing infections can occur. Immunity is expected to stabilise later in

adulthood, as the contribution of older bites to overall immunity levels starts to wane significantly.

Travel between Endemic and Non-Endemic Regions

Now consider an individual who spends their adolescence in an endemic region, but who travels to a region

with no transmission for a significant period. We compare the immunity profile of a traveller to an individual

who remains in an endemic region for a lifetime in Figure 7. The graph on the left shows the infected bite rate

for a traveller who temporarily migrates to a non-endemic region for a period of 8.5 years in early adulthood.

The graph on the right compares the expected immunity profile the traveller (shown in blue) to the expected

immunity profile of an individual who remains in the endemic region (shown in orange), subject to a consistent

sinusoidal bite rate over time.

Figure 7: Expected immunity level E[Φ(t)/η] given a sinusoidal bite rate λ(t) = 0.0025 + 0.0015sin(2πt) for

t ∈ [0, 21.5] ∪ [30, 60] and zero transmission λ(t) = 0 for t ∈ (21.5, 30); a mean of ν = 10 hypnozoites per bite

and immunity for each bite decaying at rate b = 10 year−1.

Our model predicts that immunity decays significantly in the absence of transmission, after a delay during

which immunity is still gained from relapses arising from the activation of previously-established hypnozoites.

Immunity is re-gained rapidly upon return to the endemic region.

Declining Transmission

Consider an endemic region subject to declining levels of mosquito transmission, as a result of control efforts.

We consider the immunity profile of an individual in such a region over a lifetime in Figure 8. The graph on

the left depicts the declining bite rate, subject to seasonality, while the graph on the right depicts the expected

immunity profile of an individual subject to the declining bite.
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Figure 8: Expected immunity level E[Φ(t)/η] given a sinusoidal bite rate, subject to exponential decay over

time λ(t) = [0.0025+0.0015sin(2πt)] exp (−t/60); a mean of ν = 10 hypnozoites per bite and immunity for each

bite decaying at rate b = 10 year−1.

Our model predicts that declining transmission levels can lead to a decrease in immunity over time since recent

infections contribute more strongly to immunity that previous infections. While the prevalence of infection may

decrease with declining transmission, the severity of infection may concomitantly increase after a point.

Vaccine Rebound Effect

We will now examine the vaccine rebound effect through our model. A clinical trial of the malaria vaccine

RTS,S/AS01 exhibited this dynamic (Olotu, 2016). The vaccine, which targeted sporozoites (pre-erythrocytic

stages) and thus prevented the development of blood infection, initially reduced the risk of clinical malaria

(Olotu, 2016). However, the efficacy of the vaccine was found to wane over time. In later years, vaccinated

children were found to be more susceptible to clinical infection than unvaccinated children (Olotu, 2016).

We model the efficacy of such a vaccine as a decrease in the probability psuccess(t) of an infected mosquito bite

being successful i.e. leading to a primary blood infection and the establishment of hypnozoites. We assume that

all infected mosquito bites for unvaccinated individuals are successful. We assume the vaccine initially prevents

blood infection i.e. psuccess(0) = 0, but that vaccine efficiency wanes over time, as shown in Figure 9. The

bite rate, which corresponds only to successful bites, is different for vaccinated individuals and unvaccinated

individuals in the same endemic region. If an unvaccinated individual is subject to (successful) bite rate λ(t),

then a vaccinated individual is subject to (successful) bite rate psuccess(t)λ(t), where psuccess(t) describes the

probability of a bite being successful time t after vaccination.

Figure 10 compares the immunity profiles for vaccinated and unvaccinated individuals in the same endemic

region. Successful bite rates and expected immunity profiles for vaccinated and unvaccinated individuals are

shown in blue and orange respectively.
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Figure 9: Probability of an infected mosquito bite being successful for an individual vaccinated at age 3,

modelled to be psuccess(t) = 2/π arctan ((t− 3)/2)

Figure 10: Expected immunity level E[Φ(t)/η] for vaccinated and unvaccinated given a sinusoidal infected bite

rate λ(t) = 0.0025+0.0015sin(2πt); a mean of ν = 10 hypnozoites per bite and immunity for each bite decaying

at rate b = 10 year−1. The successful bite rate for vaccinated individuals becomes psuccess(t)λ(t).

Our model predicts that a vaccine targeting pre-erythrocytic stages with waning efficacy delays the natural

acquisition of blood-stage immunity by reducing exposure to blood-stage parasites. We have thus qualitatively

captured the vaccine rebound effect. If this delay is of sufficient magnitude, it may adversely impact clinical

outcomes. By coupling our blood-stage model of immunity with more sophisticated vaccine models, we may be

able to glean insights relevant to vaccine development.

Discussion

We have developed a stochastic within-host model of exposure-dependent blood-stage immunity to Plasmod-

ium vivax. We have sought to capture two complementary dynamics driving immunity levels: the boosting of

immunity with cumulative exposure, and the decay of immunity over time. Previous models examining blood-

stage immunity to Plasmodium vivax have examined interactions between human and parasite cells (see, for

example, McQueen and McKenzie, 2008; Kerlin and Gatton, 2015). Here, we have considered the acquisition
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of blood-stage immunity to Plasmodium vivax given an arbitrary risk of exposure. I am unaware of an existing

within-host model for Plasmodium vivax that addresses this problem.

We have extended the work of White et al (2014), embedding a model of hypnozoite activation in a framework

mimicking mosquito inoculation. We have proposed a novel way of conceptualising immunity gained through

successive infections as a filtered Poisson process. We can adapt our model to reflect a broad range of transmis-

sion settings and biological phenomena. Having derived a moment-generating function to describe blood-stage

immunity, we can readily extract parameters of epidemiological significance in biologically-relevant scenarios.

Although clinical trials and longitudinal studies are central to our understanding of immunity in transmission

settings, they are subject to significant logistic and economical constraints. A mathematical model of blood-

stage immunity like ours can provide key epidemiological insights.

Our model, however, exclusively the effects of exposure on immunity. We have neglected to incorporate more

biologically complex facets of immunity in our model. There are clinical data to suggest that age-related, phys-

iological factors may play a role in immunity, independent of exposure (Rodriguez-Barraquer, 2018). Children,

for instance, still have maturing immune systems. Further evidence suggests that immunity to vivax malaria is

strain-specific, with an indeterminate degree of cross-protection (Mueller et al, 2013). Nonlinear relationships

may exist between levels of immunity to Plasmodium vivax and transmission intensities, due to variations in the

diversity levels the Plasmodium vivax parasite populations. The inclusion of such dynamics on our mathematical

model may allow deeper insights to be drawn into the acquisition of immunity to Plasmodium vivax.
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