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Abstract

This summer research project will explore the profound relationship between the geometry and

topology of manifolds, as encoded by vector bundles. Known as Chern-Weil theory, this approach

to studying the interplay of geometry and topology has been foundational to the modern study of

geometry, to the development of gauge theories of particle physics (such as the standard model of

particle physics), and to the ongoing development of noncommutative geometry. The project will

involve learning about the language of vector bundles, connections and curvature, as well as de

Rham cohomology. All these topics can be phrased using differential geometry, in particular exterior

calculus.
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1 Introduction

This summer research project explores a remarkable link between the geometry and topology of manifolds,

known as Chern Weil Theory. In order to appreciate this correspondence, the first aim of this project

was to become proficient with the topological and geometrical foundations of the theory. This was

accomplished primarily through the close study of specific examples, which feature prominently in this

report. In Section 2, we study a calculus-based approach to algebraic topology known as de Rham

cohomology. This provides a method of computing topological invariants using the language of exterior

algebra. Section 3 then introduces vector bundles, which are the mathematical objects which encode

the geometric and topological information in which we are interested. Again, emphasis is placed on

computations and specific examples, most notably the Hopf bundle which has numerous applications

in both mathematics and physics. Geometry is then introduced in Section 4 through the study of

connections and curvature. Roughly speaking, connections generalise the derivative to the vector bundle

setting, and curvature gives a measure of the anti-commutativity of this derivative. We also construct

examples of connections on vector bundles, and compute their curvature. Finally, in Section 5, we

demonstrate how to extract topological information from the curvature via characteristic classes.

1.1 Statement of Authorship

This report is the original work of its author, Jamie Bell. The results presented in this report were

inspired by notes provided by, and discussions with, A/Prof. Adam Rennie and Dr. Alex Mundey, as

well as from various sources from the academic literature, which are cited throughout the report.

1.2 Acknowledgements

My sincerest thanks go to my supervisors Adam Rennie and Alex Mundey for their invaluable assistance

during this research project. Not only did they help me to grasp many difficult concepts, they also

trained me to be a better mathematician. I would also like to acknowledge the support and input of

Angus Alexander, Ada Masters, Abraham Ng and Alex Paviour.

I extend my appreciation to the Australian Mathematical Sciences Institute for their organisation and

funding of the summer research scholarship, as well as the School of Mathematics and Applied Statistics

at the University of Wollongong for supplemental funding and their ongoing support of my studies.

2 de Rham Cohomology

Cohomology is a general tool in algebraic topology which describes topological invariants of spaces in

algebraic terms. Roughly speaking, de Rham cohomology uses calculus to describe holes in manifolds.

Let us start by recalling some facts and definitions from exterior algebra. Most of this discussion is

adapted from [4], which contains further details for the interested reader.
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2.1 Exterior Calculus

Definition 2.1. Let M be a smooth manifold, U ⊂ M an open neighbourhood of x ∈ U and let

γ : (−ε, ε) →M be a smooth curve such that γ(0) = x. Then the tangent vector to γ at x is the function

v : C∞(U) → R which satisfies

vf = γ′(0)f =
d(f ◦ γ)
dt

∣∣∣
t=0

for all f ∈ C∞(U). The collection of all tangent vectors to some curve γ such that γ(0) = x is called the

tangent space at x, denoted TxM .

Suppose xα : Uα → Rn is a choice of coordinates at x ∈M . Then we can construct a basis for the tangent

vectors in TxM by considering the tangent vectors to the coordinate curves t 7→ (x1α(0), . . . , x
i
α(0) +

t, . . . , xnα(0)). The resulting tangent vectors are denoted ∂
∂xi = ∂i. Since TxM is a vector space, this

basis induces another basis in the so-called dual space. Indeed, given a basis {v1, . . . , vn} for V , the dual

basis {v1, . . . , vn} of V ∗ = {ϕ : V → R : ϕ linear} consists of the maps satisfying

vj(vk) = δjk.

The cotangent space at x ∈ U is defined to be (TxM)∗, that is the n-dimensional vector space of linear

forms on the tangent space at x. Elements of this vector space are called cotangent vectors at x. Then

{dx1, . . . , dxn} is the dual basis to {∂1, . . . , ∂n}. If ω is an assignment of an element ω(x) ∈ (TxM)∗ to

each x ∈ U , there exist components hi : U → R such that

ω(x) = h1(x)dx
1(x) + · · ·+ hn(x)dx

n(x).

We usually abbreviate this to

ω = h1dx
1 + · · ·+ hndx

n.

Definition 2.2. A map ω : M → T ∗M is called a differential 1-form if w(x) ∈ T ∗
xM and if, when

expressed in the standard basis w = h1dx
1 + · · ·+ hndx

n, the hi are all smooth.

Differential 1-forms should be thought of as the duals to vector fields. This notion generalises to p-forms

for all 1 ≤ p ≤ n.

Definition 2.3. A differential p-form is a map ω : M → Λp(T ∗M) such that ω(x) ∈ Λp(T ∗
xM) for all

x ∈M and such that the coordinate functions are smooth with respect to any local coordinates. We call

p the degree of ω and denote the space of all p-forms on U ⊆ M by Ωp(U). For p = 0, the 0-forms are

just smooth functions, and so Ω0(U) = C∞(U).

It is possible to combine a p-form ω and q-form η to yield a (p + q)-form ω ∧ η (provided p + q ≤ n)

using the exterior product (we refer those not familiar with the exterior product to [4, Chapter 1]). It is

defined as one would expect, as

(ω ∧ η)(x) = ω(x) ∧ η(x).
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As such, the rules of the exterior product carry over to this setting:

η ∧ ω = (−1)pqω ∧ η.

The most important operation we do on differential forms is the so-called exterior derivative, a certain

generalisation of the usual derivative to the setting of exterior algebra.

Theorem 2.4. There exists a unique linear map d : Ωp(U) → Ωp+1(U) for p = 0, 1, . . . , n− 1 such that

for all f ∈ C∞(U), ω, η ∈ Ωp(U),

1. df(x)(X(x)) = (Xf)(x)

2. d(ω ∧ η) = dω ∧ η + (−1)deg(ω)(ω ∧ dη)

3. d(dω) = d2ω = 0

where for f ∈ Ω0(U), we define f ∧ η = fη. We call d the exterior derivative. Generally, the exterior

derivative of a p-form ω =
∑

I gI(dx
i1 ∧ · · · ∧ dxip), where I = (i1, . . . , ip) is a strictly ascending

multi-index, is given by

dω =
∑
I

( ∂gI
∂x1

dx1 + · · ·+ ∂gI
∂xn

dxn
)
∧ dxi1 ∧ · · · ∧ dxip .

Proof. [4, Theorem 2.5.1].

Remark. The first condition is a generalisation of the product rule, while the identity d2 = 0 can be

interpreted as a generalisation of the equality of mixed partial derivatives.

Definition 2.5. Let M and N be smooth manifold and φ = (φ1, . . . , φk) : M → N a smooth map.

Then define the pullback of f (by φ) as the map φ∗ : Ωp(N) → Ωp(M) given by

φ∗(fI ∧ dxi1 ∧ · · · ∧ dxik) =
∑
I

(fI ◦ φ)dφi1 ∧ · · · ∧ dφik

where we sum over strictly increasing indices I = (i1, . . . , ik).

Lemma 2.6. Let φ∗ : N → M be the pullback map as defined in Definition 2.5 and d : Ωk(M) →

Ωk+1(M) the exterior derivative. Then φ∗ ◦ d = d ◦ φ∗.

Proof. By linearity of the pullback and exterior derivative, it suffices to check the property holds for an

element of the form ω = fdxi1 ∧ · · · ∧ dxik ∈ Ωk(M). We calculate

φ∗ ◦ d
(
fdxi1 ∧ · · · ∧ dxik

)
= φ∗(df ∧ dxi1 ∧ · · · ∧ dxik

)
= d(f ◦ φ) ∧ dφi1 ∧ · · · ∧ dφik

= d
(
(f ◦ φ)dφi1 ∧ · · · ∧ dφik

)
= d ◦ φ∗(fdxi1 ∧ · · · ∧ dxik

)
.
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Definition 2.7. A form ω ∈ Ωk(M) is called closed if dω = 0 and exact if there exists η ∈ Ωk−1(M)

such that ω = dη.

Remark. Observe that since d2 = 0, any exact form is automatically closed. The converse is not typically

true, however. This is going to be very important soon as the extent to which this fails will give us a

tool to extract topological information.

2.2 de Rham Classes and Homotopy Invariance

We now introduce some of the algebraic aspects of cohomology. The main reference for this discussion

was [2].

Definition 2.8. A cochain complex is a sequence of vector spaces {Ck}k∈Z together with vector space

homomorphisms dk : Ck → Ck+1 such that dk+1 ◦ dk = 0. We often denote a cochain complex by

· · · −→ C−2 d−2

−→ C−1 d−1

−→ C0 d0

−→ C1 d1

−→ C2 −→ · · ·

Remark. The prefix in cochain derives from the fact they are dual (in some appropriate sense) to chain

complexes, which are defined analogously but with dk : Ck+1 → Ck. Loosely speaking, these correspond

to the theory of homology, which is also dual to cohomology. In our definition, it is possible to replace

vector space with a whole variety of different algebraic objects, for instance abelian groups, modules or

commutative rings. Finally, it is common to suppress the superscript from the dk’s and instead define

d : C• → C• such that d|Ck = dk where C• =
⊕

k∈Z C
k.

Definition 2.9. A map f : A→ B between two cochain complexes is a chain map if it commutes with

the differential operators of A and B. That is, f ◦ dA = dB ◦ f .

Example 2.10. Lemma 2.6 shows that the pullback map is a chain map. We will use this fact several

times.

There are many different cochain complexes (notably simplicial, singular and Čech complexes). See, for

instance, [5] for an introductory treatment of simplicial and singular cohomology theory. We restrict our

attention to just one type of cohomology; de Rham cohomology.

Definition 2.11. Let M be a smooth n-manifold. Then the de Rham complex is a cochain complex

such that

Ck =

Ωk(M) k ≥ 0

0 k < 0

and d : Ωk(M) → Ωk+1(M) is the exterior derivative. That is, the cochain complex

Ω0(M)
d−→ Ω1(M)

d−→ Ω2(M) −→ · · ·

Remark. In reality, the arrows only increase up to k = n because beyond that the Ck are all identically

0. This follows from the fact Λk(T ∗M) = 0 for k > n.
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Definition 2.12. The kth cohomology group of a cochain complex (C•, d) is defined to be the vector

space

Hk(C•) =
ker(dk)

im(dk−1)
.

In particular, the kth de Rham cohomology group is

Hk
dR(M) := Hk(Ω•(M)).

Remark. For the rest of this document, Hk(M) will always refer to the kth de Rham cohomology class.

For suitably nice manifolds M , one can show that Hk(M) is a finite dimensional vector space [2, p.43].

It turns out that H•(M) carries a natural multiplication given by the so-called cup product, giving it a

ring structure. In our case, this reduces to the usual wedge product on forms.

Proposition 2.13. For [ω] ∈ Hk(M) and [η] ∈ H l(M) define

[ω] ∧ [η] = [ω ∧ η] ∈ Hk+l(M).

Then (H•(M),+,∧) is a ring.

Proof. First we show ∧ is well-defined. Suppose ω′ = ω+dα and η′ = η+dβ. Then one easily computes

ω′ ∧ η′ = (ω ∧ η) + dν where ν = α∧ η+ (−1)deg(ω)ω ∧ β +α∧ dβ. Thus [ω′ ∧ η′] = [(ω+ dα)∧ (η+ dβ)]

and so ∧ is well-defined. Furthermore, if ω and η are both closed (that is dω = 0 and dη = 0) then by

the antiderivation formula we have

d(ω ∧ η) = dω ∧ η + (−1)deg(ω)ω ∧ dη = 0

and so ω ∧ η is closed. Thus ω ∧ η respresents a class in Hk+l(M).

Example 2.14. Consider M = R. Then we have

Ω0(R) = C∞(R); Ω1(R) = {fdx : f ∈ C∞(R)}; Ωk(R) = 0 k > 1.

Hence

H0
dR(R) =

ker(d0)

im(d−1)
= ker(d0) = {f : R → R : f constant} ∼= R.

Since Ω2(R) = 0, clearly ker(d1) = Ω1(R). We claim that d0 : Ω0(R) → Ω1(R) is surjective. To see this,

fix ω = fdx ∈ Ω1(R). Then

g(x) =

∫ x

0

f(x)dx

satisfies d0g = fdx by the Fundamental Theorem of Calculus. Thus

H1
dR(R) =

Ω1(R)
Ω1(R)

= 0.

This justifies our claim that de Rham cohomology measures the extent to which the Fundamental

Theorem of Calculus fails on other manifolds. In fact, it tells us much more than that. For example,

dim(H0
dR(M)) tells us the number of connected components of M .
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It is useful to keep track of the dimensions of each of the Hk
dR in the following

Definition 2.15. Let M be a manifold. The kth Betti number, k ≥ 0, is defined to be

bk(M) := dim(Hk
dR(M)).

Betti numbers have a geometric interpretation as the number of k-dimensional ‘holes’ in our manifold

M , where 0-dimensional holes are considered connected components.

There is an intriguing connection between Betti numbers and the well-known Euler characteristic.

Indeed,

Definition 2.16. The Euler-Poincaré characteristic of an n−manifold M is defined as

χ(M) =

n∑
k=0

(−1)kbk(M).

Remark. In mathematics, the ‘Euler characteristic’ may refer to many different things. For polyhedra, it

refers to the observation that Vertices−Edges +Faces = 2. For closed 2-manifolds b0 − b1 + b2 = 2− 2g

where g is the genus. Also b0 = b2 = 1 so that dimH1 = 2g. Definition 2.16 is a further generalisation

in a certain sense. For a nice account of how all of these ideas relate, see [9].

Explicit calculation of cohomology classes quickly get out of hand and so we want to develop some better

tools to do this.

Proposition 2.17. Let φ :M → N be a smooth map between manifolds. Then φ∗ : Hk(N) → Hk(M)

defined by

φ∗([ω]) = [φ∗ω]

is a well-defined R-linear map.

Proof. Suppose ω, η ∈ ker(d) and ω − η = dτ for some τ (i.e. [ω] = [η]). Then by Lemma 2.6,

φ∗(ω − η) = φ∗(dτ) = d(φ∗τ) ∈ im(d)

and so [φ∗(ω − η)] = 0 in Hk(M). Thus φ∗ : Hk(N) → Hk(M) is well-defined. It is clearly R-linear

since the usual pullback is.

Corollary 2.18. Given smooth maps φ : M → N and ψ : N → K between manifolds, there are maps

φ∗ : Hk(M) → Hk(N) and ψ∗ : Hk(K) → Hk(N) such that (ψ ◦ φ)∗ = φ∗ ◦ ψ∗.

Proof. We calculate, for [ω] ∈ Hk(K),

(ψ ◦ φ)∗([ω]) =
[
(ψ ◦ φ)∗(ω)

]
=

[
(φ∗ ◦ ψ∗)(ω)

]
= (φ∗ ◦ ψ∗)([ω]).

Taking ψ = φ−1 in Corollary 2.18 gives us the following
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Corollary 2.19. If φ : M → N is a diffeomorphism, then φ∗ : Hk(N) → Hk(M) is an isomorphism.

Remark. While simple to prove, this result is profound. It tells us that two manifolds are not equal (up

to diffeomorphism) if their de Rham cohomology classes differ.

Lemma 2.20. If M and N are manifolds, then for all k ∈ Z, Hk(M ⊔N) ∼= Hk(M)⊕Hk(N).

Proof. For k ≤ 0 the result is trivial. For k > 0, any form ω ∈ Ωk(M⊔N) restricts to forms ω|M ∈ Ωk(M)

and ω|N ∈ Ωk(N) and so [ω] 7→ ([ω|M ], [ω|N ]) is an isomorphism.

Homotopy Invariance

We have shown that de Rham cohomology is preserved under diffeomorphism. In fact, we can weaken

this assumption significantly by defining the notion of homotopy.

Definition 2.21. Two smooth maps f, g :M → N between manifolds are (smoothly) homotopic (written

f ∼H g) if there exists a smooth map F :M × R → N such that

F (x, t) =

f(x) t ≥ 1

g(x) t ≤ 0.

Definition 2.22. A (smooth) map f : M → N is a homotopy equivalence if there exists smooth

g : N →M such that

f ◦ g ∼H idN and g ◦ f ∼H idM

We say that M and N are homotopy equivalent or homotopic.

Example 2.23. Consider M = S1 and N = R2 \ {0}. We claim S1 ∼H R2 \ {0}. To see this, take the

inclusion map

ι : S1 ↪→ R2 \ {0}

and the retraction map

r : R2 \ {0} → S1; x 7→ x

|x|
.

Then r ◦ ι = idS1 already so there is nothing to prove. On the other hand, we claim ι ◦ r ∼H idR2\{0}.

Define F : (R2 \ {0})× R → R2 \ {0} by

F (x, t) =


x t ≤ 0

(1− t)x+
tx

|x|
t ∈ (0, 1)

x

|x|
t ≥ 1.

Then F is a homotopy, showing S1 ∼H R2 \ {0}.

Definition 2.24. A manifold M is said to be contractible if M ∼H point.
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Example 2.25. Consider M = R. Then the inclusion map ι : point ↪→ R together with the zero map

r : R → point given by x 7→ 0 yields a homotopy equivalence. Thus the real line is contractible.

In order to prove that de Rham cohomology is preserved under homotopy, we need the following technical

result, for which we will omit the proof.

Proposition 2.26. Let M be a manifold and let π :M × R →M be the projection map onto the first

factor. Let s0 : M → M × R be the zero section x 7→ (x, 0). Then π∗ : Hk(M) → Hk(M × R) and

s∗0 : Hk(M × R) → Hk(M) are mutually inverse isomorphisms.

Proof. [2, p. 34-35]

One consequence of Proposition 2.26 is that we can now compute the de Rham cohomology of Rn for

any n.

Corollary 2.27 (Poincaré Lemma). We have, for all n ≥ 0,

Hk(Rn) = Hk(point) =

R, k = 0

R, k > 0.

Moreover, Proposition 2.26 gives us the main result we wanted to establish.

Corollary 2.28 (Homotopy Invariance for de Rham Cohomology). If f, g :M → N are homotopic maps

then f∗ = g∗ : Hk(N) → Hk(M).

Proof. Let F : M × R → M be a homotopy such that F (x, 0) = f(x) and F (x, 1) = g(x). Let

s0, s1 :M →M × R be the 0-section and 1-section, respectively, i.e., s1(x) = (x, 1), then

f = F ◦ s0, g = F ◦ s1 =⇒ f∗ = s∗0 ◦ F ∗, g∗ = s∗1 ◦ F ∗.

Since s∗1 and s∗0 both invert the isomorphism π∗, they must be equal (uniqueness of inverses). Hence

f∗ = g∗.

2.3 The Mayer Vietoris Sequence

The Mayer Vietoris sequence allows us to calculate the cohomology classes of manifolds by piecing

together the cohomology of smaller pieces of the manifold. The main algebraic tool we will need are

exact sequences.

Definition 2.29. A sequence of vector spaces

· · · −→ Vi−1
fi−1−→ Vi

fi−→ Vi+1 −→ · · ·

is called exact if, for all i, the kernel of fi is equal to the image of fi−1.
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A particularly important special case of exact sequences are the short exact sequences.

Definition 2.30. A short exact sequence is an exact sequence of vector spaces

0 −→ A
f−→ B

g−→ C −→ 0.

We now begin the construction of the Mayer Vietoris sequence. Consider the decomposition of a manifold

M = U ∪ V into open subsets U and V . Now define maps

ιU : U ∩ V ↪
via U−−−→ U ⊔ V

ιV : U ∩ V ↪
via V−−−→ U ⊔ V

g : U ⊔ V −→M.

The maps ιU and ιV are simply inclusion maps, while g is a ‘gluing’ map. By Lemma 2.20, we may now

define maps ι∗U , ι
∗
V and g∗ as follows.

ι∗U : Ωk(U)⊕ Ωk(V ) → Ωk(U ∩ V ); (ω, η) 7→ ω
∣∣
U∩V

ι∗V : Ωk(U)⊕ Ωk(V ) → Ωk(U ∩ V ); (ω, η) 7→ η
∣∣
U∩V

g∗ : Ωk(M) → Ωk(U)⊕ Ωk(V ); ω 7→ (ω
∣∣
U
, ω

∣∣
V
).

Define ∆ := ι∗U − ι∗V . Then we have the following

Proposition 2.31. There is a short exact sequence of vector spaces given by

0 −→ Ωk(M)
g∗

−→ Ωk(U)⊕ Ωk(V )
∆−→ Ωk(U ∩ V ) −→ 0.

Proof. First suppose g∗(ω) = 0. Then (ω
∣∣
U
, ω

∣∣
V
) = 0 which implies ω = 0 since M = U ∪ V . So

ker(g∗) = 0 and the sequence is exact at Ωk(M). Now fix (ω, η) ∈ ker(∆). Then ω
∣∣
U∩V

= η
∣∣
U∩V

and

τ ∈ Ωk(M) given by

τ(x) =

ω(x), x ∈ U

η(x), x ∈ V

is well-defined on U ∩V . Then g∗(τ) = (ω, τ) and hence the sequence is exact at Ωk(U)⊕Ωk(V ). Finally,

if ω ∈ Ωk(U ∩ V ), take a partition of unity {ϕU , ϕV } subordinate to the cover {U, V }. Then

∆(ϕUω,−ϕV ω) = ϕUω + ϕV ω = ω.

Thus the sequence is exact.

This short exact sequence extends to a long exact sequence known as the Mayer Vietoris sequence.
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Theorem 2.32 (Mayer Vietoris). Let M be a manifold and let g∗ and ∆ be as defined in Proposition

2.31. Then there exists a map ∂ : Hk(U ∩ V ) → Hk+1(M) for k = 0, 1, . . . such that the sequence in

Figure 1 is exact.

H0(M) H0(U)⊕H0(V ) H0(U ∩ V )

H1(M) H1(U)⊕H1(V ) H1(U ∩ V )

H2(M) H2(U)⊕H2(V ) H2(U ∩ V )

H3(M)
...

g∗
∆∗

∂

g∗
∆∗

∂

g∗
∆∗

∂

Figure 1: The Mayer Vietoris Sequence.

The proof of Mayer Vietoris uses a general technique usually known as diagram chasing. For the details

of this proof, we refer the reader to [2, Proposition 2.3] or [5, Theorem 2.16].

Example 2.33. We will use the Mayer Vietoris sequence to compute the de Rham cohomology classes

of the circle. We cover S1 with two open sets U = S1 \ {N} and V = S1 \ {S} where N and S are the

north and south pole of S1, respectively. Clearly U ∪V = S1, and U ∩V = A1 ⊔A2 is the disjoint union

of two line segments which are homeomorphic to the real line. The associated Mayer Vietoris sequence

is given by

H0(S1) H0(U)⊕H0(V ) H0(A1)⊕H0(A2)

H1(S1) H1(U)⊕H1(V ) H1(A1)⊕H1(A2)

H2(S1) · · ·

Figure 2: The Mayer Vietoris sequence for S1.

Since both R and S1 are connected, we have H0(S1) = H0(U) = H0(V ) = H0(A1) = H0(A2) = R.

Moreover, the Poincaré Lemma tells us that Hk(R) = 0 for k > 0. Thus our sequence becomes

R → R⊕ R → R⊕ R ∂→ H1(S1) → 0 → 0 → H2(S1) → 0.

Note that the map from ∂ is surjective by exactness, and ker(δ) = im(∆∗). But ∆∗ is the pullback of
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the subtraction map ∆ = ι∗U − ι∗V . Therefore, since the difference of two constant functions is a constant

function, its image is the set of constant functions, which is isomorphic to R. Thus H1(S1) = R. For

k > 1 we have Hk(S1) = 0 since it is surrounded by zero maps.

A relatively straightforward induction argument yields the de Rham cohomology of the n-sphere as

Hk(Sn) =

R, k = 0, n

0, otherwise.

This tells us that, topologically speaking, the defining characteristic of an n-sphere Sn ⊆ Rn+1 is that it

is a connected manifold with a single n-dimensional hole: de Rham cohomology can indeed see holes!

Example 2.34. We now consider the 2-torus T 2 = S1 × S1, decomposed as in Figure 3 into the union

of two cylinders X1, X2.

Figure 3: Two open subsets of T 2 whose union is T 2.

This example will be somewhat hand-wavy otherwise the details will get out of hand. Clearly X1∩X2 =

A1 ⊔ A2 and each of X1, X2, A1, A2 and S1 × R are diffeomorphic. We use again that the cylinder is

homotopically equal to S1. So using that Hk(U ∩ V ) = Hk(A1 ⊔ A2) = Hk(A1) ⊕ Hk(A2) and that

Hk(S1) = R for k = 0, 1 our Mayer Vietoris sequence for T 2 is as shown in Figure 4.

H0(T 2) = R R⊕ R R⊕ R

H1(T 2) R⊕ R R⊕ R

H2(T 2) 0 · · ·

Figure 4: The Mayer Vietoris sequence for T 2.
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From the exactness of the diagram, and the definitions of the functions g∗ and ∆∗, we find

Hk(T 2) =


R k = 0, 2

R⊕ R k = 1

0 k > 2.

3 Vector Bundles

Fibre bundles are topological spaces which give a generalisation of the Cartesian product in the sense

that locally they resemble product spaces, but their global topological structure may differ. We make

this idea precise in the following

Definition 3.1. A fibre bundle consists of topological spaces E,X and F (usually locally compact

Hausdorff) together with a surjective and continuous map π : E → X such that π−1({x}) ∼= F and for

all x ∈ X there is an open neighbourhood U of x and a homeomorphism ΦU : π−1(U) → U ×F . The set

of all {U,ΦU} is called a local trivialisation of the fibre bundle.

Remark. We call E the total space, X the base space and F the fibre. The map π is called the projection

map. Special conditions on these fibre bundles give rise to particular kinds of bundles, notably vector

bundles (where F is a vector space, and E and X are both locally compact Hausdorff spaces) and

principal fibre bundles (where F “looks like” a Lie group).

F E

X

π

Figure 5: General fibre bundle structure.

Examples 3.2.

1. Any Cartesian product space E = X × F together with the projection map X × F → X is called

the (globally) trivial fibre bundle with fibre F . The infinite cylinder E = S1×R is a globally trivial

fibre bundle.

2. Let exp: R → S1 be given by exp(t) = e2πit ∈ S1. Then exp is a fibre bundle with fibre the

integers, since e2πit = e2πi(t+n) precisely when n ∈ Z.

3. Consider the Möbius band E = {(eiθ, t cos θ
2 , t sin

θ
2 ) ⊂ C×R2 : t ∈ R, θ ∈ [0, 2π]}. Then identifying

R with (−1, 1) (via the map t 7→ tan−1 t for instance), this gives the familiar total space. The

projection map (eiθ, t cos θ
2 , t sin

θ
2 ) 7→ eiθ maps E onto the base space X = S1. However this is a

nontrivial fibre bundle because E ̸= S1×R (see Example 3.17). Locally the Möbius band does look

like a cylinder in the sense that for all U ⊊ S1 we have E|U = U × R. Alternatively, the Möbius
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bundle may be described as the topological space [0, 1]×R equipped with the equivalence relation

(0, t) ∼ (1,−t) for all t ∈ R, where the projection map π : E → S1 is given by π([x, t]) = e2πix.

See Figure 6.

Figure 6: The Möbius band as a nontrivial fibre bundle. Image source: Wikipedia

The particular kind of fibre bundle in which we are interested is known as a vector bundle. The idea here

is to make each of our fibres a vector space. In this way, the study of vector bundles may be considered

parametrised linear algebra.

Definition 3.3. Let X be a locally compact Hausdorff space. A rank-k real vector bundle E over X is

a fibre bundle satisfying Ex := π−1({x}) ∼= Rk for all x ∈ X.

Remark. A rank-k complex vector bundle is defined analogously, replacing R with C where appropriate.

Examples 3.4.

1. The simplest example of a rank-k vector bundle is the trivial bundle E = X × Rk.

2. If we let M ⊆ Rn be a (sub)manifold, then recall the tangent space at x ∈ U ⊆M is

TxM = {γ′(0) : γ : (−ε, ε) →M, γ(0) = x}.

Then the disjoint union of all the tangent spaces

TM =
⊔

x∈M

TxM ⊆ R2n

is called the tangent bundle. This is an example of a vector bundle, where at each point the

associated vector space is the tangent space.

3. The cotangent bundle T ∗M which consists of all cotangent spaces T ∗
xM = (TxM)∗ is also a vector

bundle.
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Bundle morphisms

We now define the structure-preserving maps between vector bundles.

Definition 3.5. Let E,F → X be vector bundles. A homomorphism of vector bundles ϕ : E → F is a

continuous map which is linear on the fibres, so that ϕx : Ex → Fx is a homomorphism for all x ∈ X and

such that the following diagram commutes.

E F

X X

ϕ

πE πF

id

⟳

In Definition 3.5, we could replace id with a different homeomorphism X → X and this is sometimes

useful for checking that two vector bundles are isomorphic.

Definition 3.6. Two vector bundles E,F → X are isomorphic if there exists a homomorphism ϕ : E →

F such that ϕ : Ex

∼=→ Fx; that is, the homomorphism is a fibrewise isomorphism.

Example 3.7. We claim the tangent bundle TS1 to the unit circle S1 is isomorphic to the trivial bundle

S1 × R. To see this, observe that the line tangent to (cos θ, sin θ) ∈ R2 is perpendicular to the line

through 0 ∈ R2 and (cos θ, sin θ), which is t(sin θ,− cos θ) for t ∈ R. Alternatively, identifying R2 with

the complex plane C, we observe that the line through eiθ and the origin is teiθ, t ∈ R. Multiplication

by i rotates this line by π/2 radians yielding iteiθ, t ∈ R. See Figure 7.

With this description of tangent vectors to S1, we may construct an isomorphism given by

(eiθ, iteiθ) 7→ (eiθ, t), θ ∈ [0, 2π], t ∈ R.

The fact that TS1 ∼= S1 × R does not extend to arbitrary dimensions. Indeed, TS2 ̸= S2 × R2 follows

from the famous Hairy Ball Theorem [3, Theorem 2.2.3]: there is no nowhere vanishing continuous vector

field on S2. In fact, it’s possible to show that the only spheres Sn whose tangent bundle is trivial are

n = 1, 3, 7 [6, §2.3].

Definition 3.8. Let E
π→ X be a rank-k vector bundle and, for U, V ⊂ X, let

ΦU : π−1(U) → U × Rk

ΦV : π−1(V ) → V × Rk

be local trivialisations, with U ∩ V ̸= ∅. Then the transition function of ΦU ,ΦV is

gUV : U ∩ V → GLk(R)

defined by ΦU ◦ Φ−1
V (x, ξ) = (x, gUV (x)ξ) for all (x, ξ) ∈ U ∩ V × Rk.
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teiθ

iteiθ

θ

Figure 7: The tangent line to eiθ = cos θ + i sin θ on S1.

We can think of transition functions as a continuous change of basis. Indeed, given a local trivialisation

ΦU : E|U → U ×Rk, (ΦU ◦ v1, . . . ,ΦU ◦ vk) can be thought of as a continuous choice of basis in Rk which

is parametrised by U .

Lemma 3.9. The transition maps in Definition 3.8 satisfy:

gUU (x) = id for all x ∈ U

g−1
UV (x) = gV U (x) for all x ∈ U ∩ V

gUV ◦ gVW (x) = gUW (x) for all x ∈ U ∩ V ∩W.

Proof. The first identity is clear from the definition. Now, for (x, ξ) ∈ U ∩ V × Rk,

(x, gUV ◦ gV U (x)ξ) = (ΦU ◦ Φ−1
V ) ◦ (ΦV ◦ Φ−1

U )(x, ξ) = ΦU ◦ Φ−1
U (x, ξ) = (x, ξ).

Relabelling also yields gV U ◦ gUV = id and so g−1
UV (x) = gV U (x) for all x ∈ U ∩ V . Similarly, for

x ∈ U ∩ V ∩W, ξ ∈ Rk we have

(x, gUV ◦ gVW (x)ξ) = (ΦU ◦ Φ−1
V ) ◦ (ΦV ◦ Φ−1

W )(x, ξ) = ΦU ◦ Φ−1
W (x, ξ) = (x, gUW (x)ξ).

Example 3.10. Let E be the Möbius bundle and consider the open cover of S1 by the sets U =

S1 \ {(1, 0)} and V = S1 \ {(−1, 0)}. Then the intersection U ∩ V = A ⊔ B is the disjoint union of
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A = {eiθ ∈ S1 : θ ∈ (0, π)} and B = {eiθ ∈ S1 : θ ∈ (π, 2π)}. Let vθt := (t cos θ
2 , t sin

θ
2 ). Then

π−1(U) = {(eiθ, vθt ) : θ ∈ (0, 2π), t ∈ R}

π−1(V ) = {(eiθ, vθt ) : θ ∈ (−π, π), t ∈ R}.

Define maps ΦU : π−1(U) → U × R and ΦV : π−1(V ) → V × R by

ΦU ((e
iθ, vθt )) = (eiθ, t)

ΦV ((e
iθ, vθt )) = (eiθ, t).

These are homeomorphisms because there is a continuous inverse Φ−1
V : V × R → π−1(V ) given by

(eiθ, t) 7→ (eiθ, vθt ) (similarly for Φ−1
U ). Hence they are local trivialisations. We now look at the function

ΦU ◦ Φ−1
V : U ∩ V . We consider two cases.

(I) On A ⊂ U ∩ V , we have (0, π)×R ⊂ domΦ−1
V and Φ−1

V ((0, π)×R) ⊆ π−1(U). So ΦU ◦Φ−1
V simply

maps

(eiθ, t) 7→ (eiθ, vθt ) 7→ (eiθ, t).

Thus gUV : U ∩ V → R \ {0} takes the value 1 on A ⊆ U ∩ V .

(II) On B ⊂ U ∩ V , we have θ ∈ (π, 2π) and (π, 2π) × R ̸∈ dom(Φ−1
V ). So instead we set φ = θ + π,

then φ ∈ (0, π) so that Φ−1
V ((0, π)× R) ⊆ π−1(U). Importantly, we have eiφ = ei(θ+π) = −eiθ (so

they belong to the same equivalence class). The transition function is no longer trivial, though.

Since cos(θ + π) = − cos(θ) and sin(θ + π) = − sin(θ), we have

(eiφ, t) 7→ (eiφ, vφt ) = (eiθ,−vθt ) 7→ (eiθ,−t).

Thus gUV : U ∩ V → R \ {0} takes the value −1 on B. In conclusion,

gUV (x) =

1 x ∈ A

−1 x ∈ B.

Example 3.11. Let E = TM be the tangent bundle over M (a manifold with dimM = n). Suppose

(U, ϕU ) is a chart of M with coordinate functions x1, . . . , xn. Then for all x ∈ U , we have a basis{ ∂

∂x1
(x), . . . ,

∂

∂xn
(x)

}
of TxM . We define a trivialisation ΦU : π−1(U) → U × Rn of TM by(

x,

n∑
i=1

ai
∂

∂xi
(x)

)
7→ (p, (a1, . . . , an)).

We can also calculate the transition functions. Suppose (V, ϕV ) is another chart of M with coordinate

functions y1, . . . , yn and U ∩ V ̸= ∅. For every b = (b1, . . . , bn) ∈ Rn and x ∈ U ∩ V we have

Φ−1
V (x, b) =

(
x,

n∑
i=1

bi
∂

∂yi
(x)

)
.
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By the chain rule, on U ∩ V ,

∂

∂yi
(x) =

n∑
j=1

∂xj

∂yi
∂

∂xj
(x)

and thus

ΦU ◦ Φ−1
V (x, b) =

(
x,

n∑
i=1

bi
∂x1

∂yi
, . . . ,

n∑
i=1

bi
∂xn

∂yi

)
.

This means the transition function gUV is given by

gUV (x) = d(ϕU ◦ ϕ−1
V )

which is precisely the Jacobian matrix of the change of coordinates x1, . . . , xn → y1, . . . , yn.

Properties of vector bundles depend on the gluing instructions encoded in the transition functions. It

turns out that given local trivialisations and transition functions satisfying the relationships in Lemma

3.9, one can always construct a vector bundle. This is an example of the fibre bundle reconstruction

theorem, which we will now prove.

Theorem 3.12 (Vector Bundle Reconstruction Theorem). Suppose
⋃

α∈I Uα is a locally finite open

cover of X and gαβ : Uα ∩ Uβ → GLk(R) are continuous functions satisfying

gαα = id

gαβ = g−1
βα

gαβ ◦ gβγ = gαγ on Uα ∩ Uβ ∩ Uγ .

Then there exists a vector bundle E
π→ X such that π−1(Uα) ∼= Uα × Rk.

Proof. Let E′ =
⋃

α∈I{α} × Uα × Rk and consider the equivalence relation on E′ given by

(α, x, v) ∼ (β, y, w)
def⇐⇒ x = y, w = gαβ(x)v.

Then take E := E′/ ∼ with the projection map π : E → X given by π([α, x, v]) = x. Then Φα :

π−1(Uα) → Uα × Rk gives a local trivialisation for each α ∈ I.

3.1 The Hopf Bundle

Before defining the Hopf line bundle, we begin by considering its real analogue. It is much easier to

visualise as it sits in three dimensions, not four. As a set, the real projective line RP1 consists of all

lines through 0 ∈ R2 as shown in Figure 8. We shall denote by [x, y] ∈ RP1 the line through 0 and

(x, y) ∈ R2. The real projective line is the base space of the (real) Hopf line bundle. Observe that each

line passes through the unit circle S1 exactly twice, and so RP1 may be considered the unit circle modulo

the equivalence relation identifying antipodal points. That is,

RP1
∼= S1/ ∼
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Figure 8: Elements of the real projective line RP1 are lines through the origin.

where two points eiθ, eiφ ∈ S1 are equivalent if and only eiθ = ±eiφ. Thus RP1 inherits the quotient

topology from S1 under this equivalence relation. Recalling S1 ∼= R∪{∞}, the one-point compactification

of the real line, we have another way of thinking about RP1: each real number a ∈ R uniquely defines

a line y = ax in the plane, and the point ∞ gives us the missing vertical line x = 0. This explains why

RP1 is often called the real projective line, despite it consisting of many lines which live in R2. This

framework also provides a homeomorphism between RP1 and R ∪ {∞} = S1 via the map [x, y] 7→ y
x

where y
0 := ∞. Thus RP1 is compact and Hausdorff.

Clearly, [λx, λy] = [x, y] for all nonzero real numbers λ and so [x, y] is really an equivalence class of

points lying on a given line. To make a vector bundle over RP1 we simply attach to each point the line

corresponding to that point. Explicitly, let [x, y] ∈ RP1 be any point in real projective space, and denote

by ℓ[x,y] the line in R2 corresponding to [x, y]. This notation helps us to distinguish between lines [x, y]

which belong to the base space RP1 and the fibres ℓ[x,y] which lie over them. We define

H :=
⊔

[x,y]∈RP1

{[x, y]} × ℓ[x,y] =
{
([x, y], v) ∈ RP1 × R2 : v ∈ ℓ[x,y]

}
.

We want to show that H constitutes a line bundle over RP1, called the tautological line bundle. It

remains to show that H is a locally compact Hausdorff space, to find a projection map π : H → RP1

such that π−1{([x, y])} ∼= R and find a local trivialisation for H. To see that H is a locally compact

Hausdorff space, observe that it is equipped with the subspace topology from the product topology on
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RP1 × R2. As such, H readily inherits the properties of locally compact and Hausdorff. For further

details see, for instance, [8, §2]. The projection map π : H → RP1 given by π(([x, y], v)) = [x, y] is a

surjective and continuous map by definition of the product and subspace topology [8, §2]. Furthermore,

for any [x, y] ∈ RP1, we have π−1({[x, y]}) = {([x, y], λ(x, y)) : λ ∈ R} ∼= R, where we have naturally

identified the fibre with ℓ[x,y] which is homeomorphic to R. This was pretty easy, because that’s how we

defined our bundle!

It just remains to show that H
π→ RP1 is locally trivial. For this, we define two open sets

U1 := {[x, y] ∈ RP1 : x ̸= 0} ⊆ RP1

U2 := {[x, y] ∈ RP1 : y ̸= 0} ⊆ RP1.

So U1 consists of all lines except the vertical line x = 0 and U2 consists of all lines except the horizontal

line y = 0. Clearly U1 ∪ U2 = RP1. Now we may define maps

Φ1 : π−1(U1) → U1 × R ([x, y], λ(x, y)) 7→
(
[x, y], λ

y

x

)
Φ2 : π−1(U2) → U2 × R ([x, y], λ(x, y)) 7→

(
[x, y], λ

x

y

)
.

The homeomorphism RP1 → S1 given by [x, y] 7→ y
x induces a natural isomorphism between H and

the Möbius bundle. Indeed, each point of H can be expressed as (±eiθ, teiθ) for some θ ∈ [0, π], t ∈ R.

The point eiθ ∈ S1 is the one identified with y
x ∈ R ∪ {∞} (concretely, θ = tan−1(y/x)), and clearly

teiθ parameterises the line through this point and the origin. This representation is unique except that

(±ei0, tei0) = (±eiπ,−teiπ) for each t ∈ R. In other words, H is homeomorphic to [0, π] × R by the

identification (0, t) ∼ (π,−t), which is precisely one of our descriptions of the Möbius bundle. That is,

H ∋ ([x, y], λ(x, y)) 7→ (tan−1(y/x), λ) ∈ [0, π] × R is an isomorphism. This argument was inspired by

[7, Theorem 2.1]. The transition functions for H are thus the same as those of Example 3.10.

We now turn our attention to the tautological line bundle over CP1, the complex projective line, which

is often called the Hopf line bundle, which we shall denote H to distinguish it from its real cousin.

The definitions are basically as expected, however the bundle we construct has a different structure. In

particular, while the tautological real bundle H over RP1 is isomorphic to the Möbius bundle, the Hopf

bundle is definitely not.

Complex projective space CP1 consists of the complex lines through the origin of C2 ⊆ R4. Once more

we have a coordinate system on CP1 given by [z, w] 7→ w
z ∈ C ∪ {∞} ∼= S2, where w

0 := ∞. As such

the base space CP1 of the Hopf bundle is actually just (homeomorphic to) the 2-sphere. The Hopf

bundle H is formed by attaching complex lines corresponding to each point of CP1, just as we did in the

real case. The only significant difference between H and H is in the transition functions between local

trivialisations. We cover CP1 with two open sets

U1 := {[1, z] ∈ CP1 : z ∈ C} ⊆ CP1

U2 := {[z, 1] ∈ CP1 : z ∈ C} ⊆ CP1.
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Realising once again that CP1
∼= C ∪ {∞}, we have U1

∼= C and U2
∼= (C \ {0}) ∪ {∞}. Unlike the real

case, the intersection U1 ∩ U2 = C \ {0} is connected. The homeomorphisms

Φ1 : π−1(U1) → U1 × C ([1, z], λ(1, z)) 7→
(
[1, z], λ

)
Φ2 : π−1(U2) → U2 × C ([z, 1], λ(z, 1)) 7→

(
[z, 1], λ

)
are local trivialisations. The inverse map Φ−1

2 : U2 × C → π−1(U2) is given by(
[z, 1], µ

)
7→

(
[z, 1], µ(z, 1)

)
=

(
[1, z−1], µz(1, z−1)

)
and as such

Φ1 ◦ Φ−1
2

(
[1, z−1], µ

)
= Φ1

(
[1, z−1], µz(1, z−1)

)
=

(
[1, z−1], µz

)
.

Upon relabelling z−1 by z we find that g12 : U1 ∩ U2 → GL1(C) = C \ {0} is given by

g12(z) = z−1.

3.2 Sections and Frames

We now wish to define an important concept called a section of a vector bundle, which generalises the

notion of a vector-valued function.

Definition 3.13. Let E
π→ X be a vector bundle. A section of E is a continuous map

σ : X → E

such that σ(x) ∈ π−1({x}) for all x ∈ X (or π ◦ σ = id). The set of all sections of E is denoted Γ(E).

Examples 3.14.

1. If E = X × Rk is the rank-k trivial real vector bundle then Γ(E) = C(X;R)k and so sections are

just vector-valued functions.

2. If E = X×C is the rank-1 trivial complex vector bundle then Γ(E) = C(X;C) the set of continuous

complex-valued functions.

3. Let M be a manifold. Then a section of the tangent bundle TM is called a vector field.

4. LetM be a manifold. Then a section of the cotangent bundle T ∗M is called a differentiable 1-form.

In general, sections of the kth exterior power Λk(T ∗M) of the cotangent bundle are differentiable

k-forms.

Locally, frames give a generalised notion of a continuous choice of basis for the vector space over each

point of our base space.

Definition 3.15. Let E
π→ X be a rank-k vector bundle and suppose U ⊂ X is an open set containing

x ∈ X. Then a local frame over U , (v1, . . . , vk), is a collection of sections

vj : U → π−1(U)
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such that for all x ∈ U , {v1(x), . . . , vk(x)} is linearly independent and so a basis of Ex.

A local frame that can be defined over the entire base space X is called a global frame, which may not

always exist. In fact, the existence of a global frame is equivalent to the vector bundle being trivial.

Theorem 3.16. A vector bundle E
π→ X of rank k is globally trivial if and only if there exists a global

frame {v1, . . . , vk} : X → E.

Proof. First suppose that E = X × Rk is globally trivial. Then the frame where, for each j = 1, . . . , k,

vj(x) = ej

for all x ∈ X suffices (here {ej} is the standard basis on Rk). Conversely, if {v1, . . . , vk} is a global frame

we may define Φ : X × Rk → E by Φ(e, (a1, . . . , ak)) =
∑k

i=1 aivi(x). This map is easily seen to be a

linear isomorphism on each fibre. Also its composition with a trivialisation of E is continuous, and so it

is continuous. Hence Φ is a vector bundle isomorphism.

Remark. Since the zero vector does not span anything, the sections {v1, . . . , vk} of Theorem 3.16 are

necessarily non-zero everywhere.

Example 3.17. We can now give a proof that the Möbius bundle E is not trivial. By Theorem 3.16,

it suffices to show there is no global frame on E. For contradiction, suppose we have a global frame

σ : S1 → E (since E is rank-1, a global frame is the same as a global section). Then

σ(z) = (z, f(z))

for some f : S1 → R. For σ to be continuous, f must satisfy f(2π) = −f(0). Then by the Intermediate

Value Theorem, there exists z0 ∈ [0, 2π] such that f(z0) = 0 (see Figure 9). This contradicts our

assumption σ is a global section, which cannot attain the value zero. So the Möbius bundle is nontrivial.

Figure 9: Every section of the Möbius bundle must intersect the zero section, so it is a nontrivial bundle.
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4 Connections and Curvature

4.1 Connections

We now wish to generalise the notion of differentiation to sections of a vector bundle. The resulting

connections are necessary to define the geometric notion of curvature.

Definition 4.1. Let M be a smooth manifold. A smooth vector bundle E
π→ M is a vector bundle E

over M such that E is also a smooth manifold, π is a submersion, that is,

(dπ)e : TeE → Tπ(e)M

is a surjection for all e ∈ E and for which the local trivialisation maps are smooth.

Remark. There is an analogous definition for a smooth principal fibre bundle which also requires that

P × G → G is a smooth map. From now on, all of our sections, vector bundles and principal bundles

will be smooth.

Definition 4.2. Let E
π→ M be a smooth vector bundle over a manifold M . A (left) connection on E

is an R-linear map ∇ : Γ(E) → Γ(T ∗M ⊗ E) which satisfies

∇(fσ) = f∇(σ) + df ⊗ σ

for all σ ∈ Γ(E), f ∈ C∞(M). This is sometimes called a Koszul connection.

Remark. We may define a connection on a complex vector bundle in the obvious manner, replacing R by

C. There is also an analogous definition of a right connection on a vector bundle, which is a map from

Γ(E) to Γ(E ⊗ T ∗M). This comes down to a matter of preference as the two definitions are equivalent.

Our convention will be to always consider left connections.

An alternative but equivalent definition of a connection is to consider a map

∇̃ : Γ(E)⊗ Γ(TM) → Γ(E)

then we have ∇̃YX := ∇̃(X,Y ) = (∇X)(Y ). The way to think about this is to observe that T ∗M ⊗E =

Hom(TM,E) represents linear maps from TM to E. So ∇ takes a section X of E and yields a map ∇X

that sends a vector field Y ∈ Γ(TM) to a section of E. The connection ∇̃ acts on X and Y at the same

time rather than first on X and then on Y .

We still need to prove that a connection actually exists as it is not enough to simply define such an

object. First we will demonstrate that we really only need to find one connection, and from that we

derive as many as we like.

Proposition 4.3. Assume there exists a connection ∇ on E, a smooth vector bundle. Then the space

of all (left) connections on E is an affine space modelled on Hom(E, T ∗M ⊗ E). That is, given any

connection ∇, we may take any A ∈ Hom(E, T ∗M ⊗ E) and then ∇ + A is another connection. The

map A is called the connection 1-form.

22



Proof. First suppose we have two connections ∇1 and ∇2 on a (smooth) vector bundle E. Then for

σ ∈ Γ(E), f ∈ C∞(M),

∇1(fσ)−∇2(fσ) = f∇1(σ) + df ⊗ σ − f∇2(σ)− df ⊗ σ = f(∇1(σ)−∇2(σ)).

Thus ∇1 −∇2 is C∞(M)-linear (even though ∇1 and ∇2 individually are not!). Hence ∇1 −∇2 comes

from a vector bundle homomorphism

A : E → T ∗M ⊗ E

where Aσ(x) := (∇1−∇2)(σ)(x). Hence there is a unique A ∈ Hom(E, T ∗M⊗E) such that∇1 = ∇2+A.

Furthermore, given a connection ∇ on E and A ∈ Hom(E, T ∗M ⊗ E), we can check ∇ + A is also a

connection. For σ ∈ Γ(E), f ∈ C∞(M), we calculate

(∇+A)(fσ) = ∇(fσ) +A(fσ) = f∇(σ) + df ⊗ σ + fA(σ) = f(∇+A)(σ) + df ⊗ σ.

It now suffices to find one connection. In order to do so, we need the following lemma.

Lemma 4.4. Let X be a compact Hausdorff space and E
π→ X a (real) vector bundle. Then there exists

an idempotent p and N ∈ N such that Γ(E) ∼= pC(X)N (as modules).

Proof. Let
⋃n

α=1 Uα be an open cover of X such that Φα : π−1(Uα) → Uα × Ck is a local trivialisation.

Then define p ∈MN (C(X)) (where N = nk) by

pαj ,βl
=

√
φαφβ(gαβ)jl

where φα is a partition of unity subordinate to the cover {Uα} (which exists since X is compact) and

gαβ are the transition functions. Then∑
β

pα,βpβ,γ =
∑
β

√
φαφγφβgαβgβγ

=
∑
β

√
φαφγφβgαγ by Lemma 3.9

=
√
φαφγgαγ = pα,γ .

Thus p = p2 is a projection. Define Ψ : Γ(E) → p
⊕n

α=1 C(Uα)
k by

σ 7→ p


Φ1(σ|U1

)
...

Φn(σ|Un
).


Moreover, this is a linear isomorphism (of modules) since each Φi is a homeomorphism.

Example 4.5. Let H π→ CP1 be the Hopf line bundle. Then since CP1
∼= S2 is compact and has

a cover by two trivialisations, Theorem 4.4 guarantees the existence of an idempotent p such that

Γ(H) ∼= pC(S2)2. In fact, we can explicitly construct a projection pB such that

Γ(H) ∼= pBC(S
2)2.
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Let

pB(z) =
1

1 + |z|2

1 z

z |z|2

 .

Then we first check it is a projection. It is clearly self-adjoint because z = z. Furthermore,

p2B(z) =
1

(1 + |z|2)2

 1 + |z|2 z + z|z|2

z + z|z|2 |z|2 + |z|4

 =
1 + |z|2

(1 + |z|2)2

1 z

z |z|2

 = pB(z).

Now for any
(
f
g

)
∈ C(S2)2, we have

pB(z)

f(z)
g(z)

 =
1

1 + |z|2

 f(z) + zg(z)

zf(z) + |z|2g(z)

 =

 h(z)

zh(z)

 ∈ Γ(H)

where h = 1
1+|z|2 (f + z̄g). Here we have implicitly used the fact that the section

(
f(z)
zf(z)

)
, which at first

glance may seem well-defined only on H
∣∣
U1
, extends to a globally defined section of H. This is because

the limit as z → ∞ exists, since f, g and so h are well-defined on the sphere.

Theorem 4.6 (Existence of a Connection). Let E
π→ M be a smooth vector bundle and suppose Ψ :

Γ(E) → pC∞(M)N is a global module isomorphism with p idempotent. Then

∇(σ) := (1⊗Ψ−1) ◦ (1⊗ p) ◦ (d⊗ 1)(Ψ(σ))

is a connection on E. The connection ∇ is called the Grassmann connection.

Proof. Let us first check Ψ is well-defined. Fix σ ∈ Γ(E). Then Ψ(σ) ∈ pC∞(M)N is a column of

N functions. Next, (1 ⊗ d)Ψ(σ) is a column of 1-forms, or a sum of (1-forms)⊗(column of functions).

Applying 1⊗p to this yields a sum of (1-forms)⊗(column of functions in im(p)). Finally applying 1⊗Ψ−1

sends the second component back to a section of E, resulting in a sum of (1-forms)⊗(sections of E),

which is an element of Γ(T ∗M ⊗ E). Now we check ∇ is a connection. For f ∈ C∞(M),

∇(fσ) = (1⊗Ψ−1) ◦ (1⊗ p) ◦ (d⊗ 1)(Ψ(fσ))

= (1⊗Ψ−1) ◦ (1⊗ p) ◦ (df ⊗Ψ(σ) + f(d⊗ 1)(Ψ(σ)))

= (1⊗Ψ−1) ◦ (df ⊗Ψ(σ)) + f(1⊗Ψ−1) ◦ (1⊗ p) ◦ (d⊗ 1)(Ψ(σ))

= df ⊗ σ + f∇(σ).

Thus ∇ is a connection.

Remark. In a shorthand abuse of notation, we write ∇ = pd for the Grassmann connection we just

constructed. The idea is that we first identify a section σ ∈ Γ(E) of a vector bundle with an element of

pC(M)N where it makes sense to ‘differentiate’ componentwise. We then project the result back onto

pC(M)N and identify it once more to obtain a section ∇(σ) ∈ Γ(T ∗M ⊗ E). By Proposition 4.3 we

obtain a global description of connections as operators of the form ∇ = pdp+A,A ∈ pMN (C(M))p.
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In general connections are difficult to write down explicitly, but we will look at two concrete examples.

Example 4.7 (Levi-Civita Connection). Let M ⊆ Rn be a submanifold and V ∈ Γ(TM) a section of

its tangent bundle. Then we can write V in coordinates as V = V j∂j (where summation is implied). In

general,

dV = V j
,kdx

k ⊗ ∂j

belongs to Γ(T ∗Rn ⊗ TRn) but not Γ(T ∗M ⊗ TM). That is, the exterior derivative itself fails to give a

connection. However, taking p to be the orthogonal projection onto TM we have a connection ∇ = pd

which, in coordinates, is given by

∇WV = V j
,kW

k∂j + V jΓk
jmW

m∂k,

where Γk
jm = ∇∂j

∂m are the Christoffel symbols. For our choice of p, this is called the Levi-Civita

connection on the tangent bundle.

Example 4.8 (Hopf Bundle). Let σ ∈ Γ(H) be a section of the Hopf bundle. Then naively, we have

dσ = d

 f

zf

 =

 df

dzf + zdf

 = df ⊗

1

z

+ dz ⊗

0

f

 .

This does not belong to Γ(T ∗S2 ⊗ H) and so d once again does not constitute a connection. However

we claim ∇ = pBd, where pB is the projection in Example 4.5, does constitute a connection. Let(
f
zf

)
∈ Γ(H). Then we calculate

∇(σ) = (1⊗ p)

 df

zdf + dzf


= df ⊗

1

z

+ dz ⊗ p

0

f


= df ⊗

1

z

+
dz

1 + |z|2
⊗

 zf

|z|2f


= df ⊗

1

z

+
fz̄dz

1 + |z|2
⊗

1

z

 ∈ Γ(T ∗S2 ⊗H).

Moreover,

∇(fσ) = (1⊗ p)(df ⊗ σ) + (1⊗ p)(fd(σ))

= df ⊗ σ + fpd(σ)

= df ⊗ σ + f∇(σ)

and so ∇ = pBd is a connection.
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Our picture of connections ∇ = pd+A as projections of the usual exterior derivative on forms is a very

global picture which is not commonly used in differential geometry and physics but is useful in proving

existence. We now consider a local expression for a connection on a vector bundle.

Let E
π→ M be a (smooth) vector bundle. Given a local trivialisation ΦU : π−1(U) → U × Rk, let

e = (e1, . . . , ek) be a local orthonormal frame (such that ei : U → E|U for all i). Any local section

σ : U → E|U may be expressed in the frame as a linear combination

σ =

k∑
i=1

σiei.

Now suppose ∇ is a connection on E. For any basis section ei : U → E|U , there exist 1-forms Aj
i ∈ Ω1(U)

such that

∇(ei) =

k∑
j=1

Aj
i ⊗ ej .

The matrix A = (Aj
i )1≤i,j≤k ∈ Ω1(U,End(E|U )) is called the local connection 1-form over U . Using the

Leibniz rule for the connection, we calculate

∇(σ) = ∇
( k∑

i=1

σiei

)
=

k∑
i=1

(
σi∇(ei) + dσi ⊗ ei

)
=

k∑
i,j=1

(
dσj + σiAj

i

)
⊗ ej .

Using matrix shorthand we may write this as ∇(σ) = dσ +Aσ and we see that ∇|U = d+A. The local

connection 1-form A is precisely the restriction of the End(E)-valued 1-form of Proposition 4.3 such that

∇|U differs from the trivial connection d on E|U . In other words, both our pictures look the same once

we restrict to a local trivialisation.

A natural question to ask is how the connection changes under a change of local trivialisation (or

sometimes change of gauge). Suppose e′ = (e′1, . . . , e
′
k) is another local frame over V , U ∩ V ̸= ∅. There

is a matrix g = (gji ) relating e and e′ by e′ = eg and so we can calculate

∇(e′) = ∇(eg) = (∇e)g + e⊗ dg = e(Ag + dg) = e′(g−1Ag + g−1dg).

Hence the connection 1-form B of ∇ over V transforms under a change of trivialisation via

B = g−1Ag + g−1dg.

4.2 Curvature

Let ∇ : Γ(E) → Γ(T ∗M ⊗ E) be a connection on a vector bundle E compatible with an Hermitian (or

nondegenerate) form (·|·).

Definition 4.9. The curvature of ∇ is the map RE : Γ(E) → Γ(Λ2T ∗M ⊗ E) given by

REσ = ∧ ⊗ IdE ◦ (d⊗ IdE − IdT∗M ⊗∇) ◦ ∇σ.
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Remark. It should be noted there is a problem of left- and right-handedness in our definition. That

is, we have chosen a convention ∇ : Γ(E) → Γ(T ∗M ⊗ E) but the connection can be rephrased as

∇ : Γ(E) → Γ(E ⊗ T ∗M) using the canonical isomorphism. However in this case, we have to change a

minus sign in our definition.

REσ = IdE ⊗∇ ◦ (IdE ⊗ d+∇⊗ IdT∗M ) ◦ ∇(σ).

Remark. Despite its admittedly messy form when expressed concretely in Definition 4.9, the curvature

is the obvious way of constructing a second derivative of a connection ∇ on E. To see this more

clearly, observe that ∇ : Ω0(E) → Ω1(E) in the same manner in which d : Ωk(M) → Ωk+1(M). We

extend this to a map RE : Ω0(E) → Ω2(E) by composing ∇ with another map, which we might call

d∇ : Ω1(E) → Ω2(E) which satisfies the Leibniz rule d∇(ω ⊗ σ) = dω ⊗ σ − ω ∧ ∇σ. Indeed, if you

squint your eyes, then REσ looks exactly the same as (d∇ ◦ ∇)σ. In the case of the exterior derivative,

dk+1 ◦ dk = 0 for all k, but this is not true for d∇. The curvature of the connection measures precisely

the obstruction to the second derivative vanishing.

Lemma 4.10. The curvature RE is an End(E)-valued 2-form. That is,

RE ∈ Γ(Λ2T ∗M ⊗ E ⊗ E∗) = Hom(E,Λ2T ∗M ⊗ E).

Proof. It suffices to prove that RE is C∞(M)-linear. Let f ∈ C∞(M), σ ∈ Γ(E). Then we calculate

RE(fσ) = ∧ ⊗ IdE(d⊗ IdE − IdT∗M ⊗∇) ◦ (f∇σ + df ⊗ σ)

= df ∧∇σ + f ∧ ⊗IdE ◦ d⊗ IdE∇(σ)− f ∧ ⊗IdE ◦ IdT∗M ⊗∇ ◦ ∇(σ)− df ∧∇σ

= fREσ.

Just as we thought of the connection locally as being a matrix A of 1-forms, we may think of the curvature

(locally) as a matrix of 2-forms.

Before continuing, we will explicitly define some operations on End(E)-valued forms. This will make

our discussion of curvature under local trivialisations make a lot more sense. For A ∈ Ωk(End(E)), we

may write A = ηi ⊗Ni for some ηi ∈ Ωk(M) and Ni ∈ Ω0(End(E)). Similarly, an End(E)-valued l-form

B ∈ Ωl(End(E)) may be written B = µj ⊗Mj . We define their wedge product as

A ∧B := (ηi ∧ µj)⊗ (NiMj).

The product NiMj of endomorphisms is just composition. Importantly, there are two different wedges

here; the usual wedge product ηi∧µj of differential forms, and the wedge we just defined. Because we are

lazy, ∧ will adopt whichever definition makes sense in context. Crucially, some properties of the wedge

product of differential forms do not extend to the wedge product of End(E)-valued forms. In the first

instance, ω ∧ ω always vanishes however the latter expression is not trivial as

A ∧A = (ηi ∧ ηj)⊗ (NiNj)
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and each ηi ∧ ηj may not vanish if i ̸= j. This is not the only way of defining a product between

End(E)-valued forms. We may define the commutator [A,B] of A and B by

[A,B] := (ηi ∧ µj)⊗ [Ni,Mj ]

where [Ni,Mj ] = NiMj −MjNi. The two products are connected via the relation

[A,B] = A ∧B − (−1)deg(A) deg(B)B ∧A

which in particular implies A ∧ A = 1
2 [A,A]. This follows from the anticommutativity of the standard

wedge product of differential forms. In local descriptions of curvature, both notations are used but [·, ·]

is preferred in more general setting where the commutator may be taken to be the Lie bracket. We will

use the wedge product.

Proposition 4.11 (Cartan’s Structure Equation). Suppose ∇ is a connection on a vector bundle E

with local connection form A on a trivialising set U . Then the curvature RE locally has the form

ΩA = dA+A ∧A, where ΩA ∈ Ω2(End(E)|U ).

Proof. Let e = (e1, . . . , ek) be a local frame on U . Then (suppressing our summation notation)

RE(ei) = ∧ ⊗ IdE ◦ (d⊗ IdE − IdT∗M ⊗∇) ◦ ∇(ei)

= ∧ ⊗ IdE ◦ (d⊗ IdE − IdT∗M ⊗∇) ◦ (Aj
i ⊗ ej)

= ∧ ⊗ IdE ◦ (dAj
i ⊗ ej −Aj

i ⊗∇(ej))

= dAp
i ⊗ ep −Aj

i ∧A
p
j ⊗ ep

= (dAp
i +Ap

j ∧A
j
i )⊗ ep.

That is, (ΩA)
p
i = dAp

i +Ap
j ∧A

j
i which is precisely the wedge product between End(E)-valued forms we

just defined. In particular, we have shown

ΩA = dA+A ∧A.

In Lemma 4.10, we showed that RE is globally well-defined. As such, the local curvature forms ΩA

should be compatible on overlapping trivialisations. This is in contrast to the local connection forms A

which don’t transform quite as nicely under a change of local trivialisations.

Theorem 4.12. Let E
π→M be a vector bundle with connection ∇. Suppose ΦU ,ΦV are local trivialisations

with U ∩V ̸= ∅ and A and B are the local connection 1-forms associated to U and V , respectively. Then

ΩA = gUV ΩBg
−1
UV .
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Proof. We will write g := gV U for notational simplicity. Then recall A = g−1dg+g−1Bg, so we calculate

ΩA = d(g−1dg + g−1Bg) + (g−1dg + d−1Bg) ∧ (g−1dg + d−1Bg)

= dg−1 ∧ dg + dg−1 ∧Bg + g−1dBg − g−1B ∧ dg + g−1dg ∧ g−1dg

+ g−1dg ∧ g−1Bg + g−1B ∧ dg + g−1B ∧Bg

= g−1(dB +B ∧B)g + dg−1 ∧ dg + dg−1 ∧Bg + g−1dg ∧ g−1dg + g−1dg ∧ g−1Bg.

Now note that 0 = d(gg−1) = dgg−1 + gdg−1, we have dg = −gdg−1g. So

ΩA = g−1ΩBg − dg−1 ∧ gdg−1g + dg−1g ∧ dg−1g + dg−1 ∧Bg − dg−1 ∧Bg

= g−1ΩBg

= gUV ΩBg
−1
UV

We will now look at some examples. Our first example will be given as a lemma, which shows us that the

definition of curvature often given in the setting of differential geometry for the tangent bundle coincides

with Definition 4.9.

Lemma 4.13. Let M be a smooth manifold and consider its tangent bundle TM equipped with a

connection ∇. Then for X,Y ∈ Γ(TM),

RTM (X,Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ]

where [X,Y ] = XY − Y X is the commutator bracket.

Proof. It suffices to check the identity holds on a basis element of TM . So let e = (e1, . . . , ek) be a local

section of TM . Then for all X ∈ Γ(TM),

∇X(ei) = ∇(ei)(X) =

k∑
j=1

Aj
i (X)ej .

Therefore, for X,Y ∈ Γ(TM) (with summation implied)

∇X∇Y (ei) = ∇X(Aj
i (Y )ej)

= XAj
i (Y )ej +Aj

i (Y )∇X(ej)

= XAj
i (Y )ej +Al

i(Y )Aj
l (X)ej .

Similarly,

∇Y ∇X(ei) = Y Aj
i (X)ej +Al

i(X)Aj
l (Y )ej .

Furthermore,

∇[X,Y ](ei) = ∇(ei)([X,Y ]) = Aj
i ([X,Y ])ej .
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Putting these all together, we calculate

(∇X∇Y −∇Y ∇X −∇[X,Y ])(ei) = XAj
i (Y )ej +Al

i(Y )Aj
l (X)ej − Y Aj

i (X)ej

−Al
i(X)Aj

l (Y )ej −Aj
i ([X,Y ])ej

=
(
XAj

i (Y )− Y Aj
i (X)−Aj

i ([X,Y ])
)
ej

+
(
Al

i(Y )Aj
l (X)−Al

i(X)Aj
l (Y )

)
ej

= dAj
i (X,Y )ej +Al

i ∧A
j
l (X,Y )ej

= (dAj
i +Al

i ∧A
j
l )(X,Y )ej

= (ΩA)
j
i (X,Y )ej .

By Proposition 4.11, this proves the claim.

For the Levi-Civita connection on TM , we can write the curvature tensor RTM associated to this

connection, called the Riemann curvature tensor, in coordinates using Lemma 4.13. Let {∂i} be the

coordinate basis of the tangent bundle TM for some choice of local coordinates xα : Uα → Rk at x ∈M .

Then since [∂i, ∂j ] = 0 for all i, j,

RTM (∂i, ∂j)∂k = ∇∂i∇∂j∂k −∇∂j∇∂i∂k

= Γm
jk,i∂m + Γm

jkΓ
l
im∂l − Γm

ik,j∂m − Γm
ikΓ

l
jm∂l

=
(
Γm
jk,i − Γm

ik,j + Γl
jkΓ

m
il − Γl

ikΓ
m
jl

)
∂m

=: Rm
ijk∂m

where the Γk
ij := ∇∂i

∂j are the Christoffel symbols and Rm
ijk are called the components of the Riemann

curvature tensor. This example illustrates that the study of Riemannian geometry is really just a very

special case of the study of vector bundles, where we restrict ourselves to a single vector bundle (the

tangent bundle to a smooth manifold) and a certain connection (the Levi-Civita connection).

Example 4.14 (Hopf Bundle). Recall we defined a connection ∇ = pBdpB on H in Example 4.8. We

wish to calculate the curvature of this connection. Let σ =
(

f
zf

)
∈ Γ(H). Then we calculate

RH

 f

zf

 = (∧ ⊗ IdE) ◦ (d⊗ IdE − IdT∗M ⊗∇) ◦ ∇

 f

zf


= (∧ ⊗ IdE) ◦ (d⊗ IdE − IdT∗M ⊗∇) ◦

df ⊗

1

z

+
fz̄dz

1 + |z|2
⊗

1

z


= d(df)⊗

1

z

− df ∧∇

1

z

+ d
( fz̄dz

1 + |z|2
)
⊗

1

z

− fz̄dz

1 + |z|2
∧∇

1

z

 .

Now d2f = 0 so the first term vanishes and moreover since the derivative of a constant is zero,

∇

1

z

 =
z̄dz

1 + |z|2
⊗

1

z

 .
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We also calculate, applying the Leibniz rule repeatedly,

d
( fz̄dz

1 + |z|2
)
=
df ∧ z̄dz
1 + |z|2

+
fdz̄ ∧ dz
1 + |z|2

− fz̄dz ∧
(
− z̄dz + zdz̄

(1 + |z|2)2
)

=
df ∧ z̄dz
1 + |z|2

+
fdz̄ ∧ dz(1 + |z|2) + f |z|2dz̄ ∧ dz + fz̄2dz ∧ dz

(1 + |z|2)2

=
df ∧ z̄dz
1 + |z|2

+
fdz̄ ∧ dz
(1 + |z|2)2

.

Continuing our calculation above, we find

RH

 f

zf

 =

{
−df ∧ z̄dz

1 + |z|2
+
df ∧ z̄dz
1 + |z|2

+
fdz̄ ∧ dz
(1 + |z|2)2

+
fz̄dz

1 + |z|2
∧ z̄dz

1 + |z|2

}
⊗

1

z


=

dz̄ ∧ dz
(1 + |z|2)2

⊗

 f

zf

 ,

where we have used that ω ∧ ω = 0 for any k-form ω.

Remark. In the previous example, we calculated the curvature for just one connection, but recall every

other connection looks like some perturbation ∇ = ∇G + A of the Grassmann connection ∇G and so

if one wants to compute the curvature for a general connection, you simply include this A term in the

calculation above. Note that regardless of your choice of A, the term we just calculated will not vanish,

as it does not depend on A.

5 Chern-Weil Theory

Roughly speaking, Chern-Weil theory provides a method of constructing cohomology classes from geometric

information encoded in connections, thus marrying the two concepts we have explored previously;

algebraic topology and geometry. This discussion mostly follows [10].

5.1 Characteristic Classes

We begin by studying how the curvature of a connection can be used to construct de Rham classes known

as characteristic classes. Any connection on a vector bundle E may be expressed locally by a matrix ω of

1-forms, and similarly the curvature can be represented locally by a matrix Ω of 2-forms. Under a change

of trivialisation, curvature transforms by conjugation Ω̃ = g−1Ωg and thus if P is some polynomial which

is invariant under conjugation, the differential form P (Ω) will be independent of the frame and so define

a global form onM . We will show that in fact, it is a closed form which is independent of the connection.

This gives rise to the aforementioned characteristic classes.

Definition 5.1. Let X = (xij) be a k × k matrix. A polynomial P (X) on glk(R) is called invariant if

P (A−1XA) = P (X) for all A ∈ GLk(R).
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Example 5.2. Let X = (xij) be a k × k matrix, λ ∈ C. Then

det(λ1 +X) = λk + f1(X)λk−1 + . . .+ fk−1(X)λ+ fk(X).

The functions fj are called characteristic polynomials, and they are all invariant since

det(λ1 +A−1XA) = det(A−1(λ1 +X)A) = det(λ1 +X)

using the fact det is a homomorphism.

Example 5.3. For all j ∈ N the map Tj(X) := tr(Xj) is an invariant polynomial. This simply follows

from the fact tr(AB) = tr(BA). So in particular,

tr(A−1XjA) = tr(A−1AXj) = tr(Xj).

Each Tj is called the jth trace polynomial.

The characteristic polynomials and trace polynomials are related by the identity [10, Theorem B.14]

Tj − f1Tj−1 + f2Tj−2 − · · ·+ (−1)j−1fj−1T1 + (−1)jjfj = 0.

These are especially important examples of invariant polynomials because of the following algebraic

result.

Theorem 5.4. The ring Inv(glk(R) of invariant polynomials is generated by the characteristic polynomials

{fj} or the trace polynomials {Tj} for j = 0, 1, . . . , k.

Proof. [10, Theorem 23.4]

This means it generally suffices to prove results about characteristic classes for the trace polynomials.

We will employ this technique in proving the main result of this section.

Before continuing, we check that it makes sense to ‘take powers of Ω’. In fact, we have already seen this.

Recall that our connection ∇ : Γ(E) → Γ(T ∗M⊗E). When we defined the curvature, we got an operator

Ω : Γ(E) → Γ(Λ2T ∗M ⊗ E). Thus Ω = d∇ ◦ ∇ was really just a second derivative of the connection. In

general, for any k ∈ N we have a map

∇ : Γ(ΛkT ∗M ⊗ E) → Γ(Λk+1T ∗M ⊗ E)

and thus we can just repeatedly apply ∇ to obtain higher powers of Ω.

Lemma 5.5. Let E be a smooth rank-k vector bundle over M and ∇ a connection on E. Then for all

invariant polynomials P ∈ Inv(glk(R)), P (Ω) is a global 2r-form on M where r is the degree of P .
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Proof. Let Ω be the curvature matrix relative to a frame e = (e1, . . . , ek) on U ⊂M . For p ∈ U , Ωp is a

k × k matrix of 2-forms and if e′ = eg is another local frame on U we have

Ω′
p = g(p)−1Ωpg(p)

for some g(p) ∈ GLk(R). Thus since P is invariant, as p varies over U we have P (Ω) = P (Ω′) is

independent of a choice of frame. Now given a local trivialisation {Uα}, let eα be any frame on Uα,

and Ωα the curvature matrix relative to this frame. Then P (Ωα) is a 2r-form on Uα. On the overlap

Uα∩Uβ we have two 2r-forms P (Ωα) and P (Ωβ) which must equal since P (Ωα) is independent of frame.

Therefore, the collection {P (Ωα)} gives rise to a global 2r-form on M .

Theorem 5.6. Let E
π→M be a smooth vector bundle and ∇ and connection on E with local curvature

Ω. Then for any r ∈ N, Tk(Ω) is a closed 2r-form on M . If ∇̃ is another connection on E and

α = ∇− ∇̃ ∈ Ωr(M,EndE) then

Tr(Ω)− Tr(Ω̃) = d
(
r

∫ 1

0

tr
(
α ∧ Ωr−1

t

)
dt
)

where Ωt is the curvature of the connection ∇t = (1− t)∇̃+ t∇. In particular, [Tr(Ω)] = [Tr(Ω̃)] so the

cohomology class of Tr(Ω) is independent of the connection.

Lemma 5.7. Given two connections ∇ and ∇̃ on a vector bundle E over M ,

∇t = t∇+ (1− t)∇̃

is another connection for all t ∈ (0, 1).

Proof. It suffices to check ∇t(fσ) = f∇t(σ) + df ⊗ σ for all σ ∈ Γ(E), f ∈ C∞(M). We calculate,

∇t(fσ) = t∇(fσ) + (1− t)∇̃(fσ)

= t(f∇(σ) + df ⊗ σ) + (1− t)(f∇̃(σ) + df ⊗ σ)

= f(t∇(σ) + (1− t)∇̃(σ)) + df ⊗ σ

= f∇t(σ) + df ⊗ σ.

Lemma 5.8. Let ∇ be a connection on a vector bundle E. Then for all A ∈ Ωr(M,EndE),

d(tr(A)) = tr([∇, A]).

Proof. Locally, the connection may be written as ∇ = d+ ω, and A is a matrix of r-forms relative to a

frame e on U . So,

[∇, A]e = [d+ ω,A]e

= [ω,A]e+ d(Ae)−Ad(e)

= [ω,A]e+ d(A)e+ (−1)2kAd(e)−Ad(e)

= [ω,A]e+ d(A)e.
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Taking the trace of both sides, we have

tr([∇, A]) = tr([ω,A]) + tr(d(A)) = 0 + tr(d(A)) = dtr(A).

Proof of Theorem 5.6. By Lemma 5.8, we have

dTr(Ω) = tr([∇,Ωr])

= tr([∇, (∇2)r])

= tr(∇2r+1 −∇2r+1) = 0.

So Tk(Ω) is a closed form. Now,

d

dt

(
Tr(Ωt)

)
= tr

( r−1∑
j=0

Ωj
t

dΩt

dt
Ωr−j−1

t

)
= r tr

( d
dt

(∇2
t )Ω

r−1
t

)
= r tr

(( d
dt

(∇t)∇t +∇t
d

dt
(∇t)

)
Ωr−1

t

)
= r tr

((
α∇t +∇tα

)
Ωr−1

t

)
= r tr

(
d(α ∧ Ωr−1)

)
= r d

(
tr(α ∧ Ωr−1)

)
.

Hence,

Tr(Ω)− Tr(Ω̃) =

∫ 1

0

d

dt
tr(Ωr

t ) dt

= d
(
r

∫ 1

0

tr(α ∧ Ωr−1) dt
)
.

Thus we have shown Tr(Ω) − Tr(Ω̃) is exact, and so [Tr(Ω)] is independent of the choice of connection

on E.

By Theorem 5.4, it immediately follows that Theorem 5.6 can be extended to any invariant polynomial

P (Ω).

Corollary 5.9 (Chern-Weil Homomorphism). Let E be a vector bundle of rank k on a manifold M , ∇

a connection on E, and P an invariant polynomial of degree r on glk(R). Then the global 2r-form P (Ω)

on M is closed and [P (Ω)] ∈ H2r(M) is independent of the connection.

The map c : Inv(glk(R)) → H•(M) given by P (Ω) 7→ [P (Ω)] is called the Chern-Weil homomorphism.

We call each equivalence class [P (Ω)] a characteristic class.

Remark. One might ask, what about odd degree cohomology classes? It turns out that if k is odd, then

the cohomology class [Tk(Ω)] = 0 for any connection on any vector bundle. For a proof of this, see

[10, Theorem 24.3]. Another legitimate question is to ask if we can obtain every de Rham cohomology
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class via the Chern-Weil homomorphism. The answer is yes, but proving this requires some much more

complicated topological machinery (see [7]).

Save for a few technical details, we now have a way to perfectly translate information about curvature to

information about de Rham cohomology in a manner which is independent of the choice of connection.

This is really only the very beginnings of the powerful Chern-Weil theory, but we will finish by looking

at the notion of Chern classes.

Definition 5.10. Let E be a complex vector bundle over M and define the total Chern class of E as

Ch(E) = det
(
1 +

i

2π
Ω
)
= 1 + c1(E) + · · ·+ ck(E).

The ci(E) are called the Chern classes of E.

Remark. There is an analogue of the Chern class for real vector bundles, called the Pontrjagin class but

they differ in some important ways. Most notably, one must contend with questions of orientability. For

simplicity, we just consider the example of the Chern class as it is the one relevant to our complex line

bundle H.

Example 5.11. Recall that for the connection ∇ = pBdpB on the Hopf bundle, we computed its

curvature as

RH =
dz̄ ∧ dz

(1 + |z|2)2
.

Now the coordinate z is not globally defined on S2, however it is defined almost everywhere, so we may

integrate over S2. Alternatively, we may identify S2 with R2 using stereographic projection. Then the

curvature term becomes

RH =
2idx ∧ dy

(1 + |x|2 + |y|2)2
.

Using polar coordinates, we calculate∫
S2

RH = 2i

∫
R2

dx ∧ dy
(1 + |x|2 + |y|2)2

dxdy

= 4πi

∫ ∞

0

r

(1 + r2)2
dr

= 2πi.

Therefore, since H is a line bundle, its only Chern class is

Ch(H) =
2πi

2πi
= 1.

This finally gives us a proof the H is nontrivial, since the trivial bundle has a Chern class of 0, and thus

H ̸∼= S2 × C.

For more complicated examples, much more sophisticated tools exist for calculating characteristic classes,

but that will be the topic for further research. Both [7] and [10] delve further into the theory of

characteristic classes for the interested reader.
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6 Discussion and Conclusion

In this report, we have explored in considerable detail two key areas of research in modern mathematics,

namely differential geometry and algebraic topology. We have demonstrated how calculus may be used to

compute topological invariants of some underlying space, which has powerful ramifications since calculus

generally allows for more explicit computation. In particular, we used the methods we developed to

characterise the de Rham cohomology of the n-sphere and the torus. Cohomology theory, and algebraic

topology more generally, extend far beyond what we had time to study in this summer project but many

of the motivations remain the same. We want to find ways of assigning algebraic invariants to topological

spaces. Rephrasing problems in algebraic terms can often make problems of topology more tractable and

so this provides a rich area of future research.

We have also introduced and studied vector bundles as something of a generalisation of Riemannian

geometry. This intrinsic approach to studying geometry required us to carefully define notions of sections,

connections and curvature. Our research was aided once again by studying concrete examples, most

notably the Hopf bundle and tangent bundles. Particular emphasis was placed on the dependence of

curvature on the choice of connection, which at first glance seemed to present a major obstacle to

extracting any kind of global topological data from the geometry of vector bundles.

Nevertheless, we showed that Chern-Weil theory provides us with exactly the right tool to calculate

topological invariants from curvature, which is independent of the choice of connection. The theory of

vector bundles, connections and characteristic classes is another field of very active research both within

mathematics, to things like noncommutative geometry and K-theory, and beyond. Notably, these ideas

find many applications in physics, with the language of vector bundles and connections being central to

gauge theories such as the celebrated standard model of particle physics.
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