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1 Abstract

The laser flash method is the most popular technique for estimating the thermal diffusivity of a

material. It involves subjecting the front surface of a small sample of a material to a heat pulse

of radiant energy for a short duration, then measuring the corresponding rear-surface temper-

ature rise over time. In 2019, Carr and Wood proposed a model for a one-dimensional sample

that incorporated a finite pulse time effect, using the rear-surface integral method to estimate

the thermal diffusivity. This report presents an extension to this previous work, considering

radial heat flow in two-dimensional annular geometries and three-dimensional spherical shell

geometries. New formulas are derived and verified using synthetic data. Additionally, their

sensitivity to three fixed levels of measurement noise are investigated. Lastly, the consideration

of two-layer samples and varying levels of noise are identified as extensions for future work.

2 Introduction

Thermal diffusivity is a physical property of key importance in many industries. From insulat-

ing homes to reducing heat build-up in electrical equipment, optimal thermal inertia is desired

for both functionality and safety. Knowledge of the thermal diffusivity, or the heat-conductive

ability of a material relative to its storage capacity, is, therefore, vital to satisfy such a require-

ment. It is, therefore, unsurprising that we find such a property as an integral part of the heat

diffusion equation (Salazar, 2003).

The heat diffusion equation describes the spreading out of heat to regions that are cooler,

relatively speaking, than areas where heat is concentrated. Hence, such a model is essential

for describing and understanding thermodynamic systems. At any given point, when heat is

flowing in or out of a material, the increase, or decrease, in temperature is proportional to the

the thermal diffusivity. Typically, the thermal diffusivity is defined as the constant α (m2 s−1).

Specifically, it is the ratio of the thermal conductivity k (W m−1 K−1) to the volumetric heat

capacity, which is the product of the mass density ρ (kg m−3) and the specific heat capacity c

(J K−1) (Bergman et. al, 2011). However, if these physical properties are unknown then this

prevents explicit calculation of the thermal diffusivity in this manner. This leads to the idea of
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a laser flash experiment.

The laser flash method, first described in 1961, involves exposing the front surface of a ther-

mally insulated material to a heat pulse of radiant energy for a short duration. The resulting

temperature rise on the opposite, or rear, surface is then recorded (Parker et. al, 1961). It is

the half-rise time, or time taken for the rear-surface temperature to reach half of its maximum

value, that Parker et. al (1961) used as a key foundation for estimating the thermal diffusivity

(Carr, 2019). In addition, Parker et. al (1961) made some simplifying assumptions, those being

a homogeneous, thermally insulated sample, a heat pulse that is uniformly and instantaneously

absorbed into a small portion of the sample, and unidirectional heat flow in one-dimensional

geometries (Carr and Wood, 2019). Since the publication of research conducted by Parker et.

al, the laser flash method has risen substantially in popularity (Vozár and Hohenauer, 2003).

Unsurprisingly, several modifications and advancements have been made to the method

originally proposed by Parker et. al (1961). To elaborate, finite pulse time effects, heat losses,

and accounting for high temperatures (Cowan, 1962) have been considered, in addition to ex-

tending the method to two-layer samples (Czél et. al, 2013). Recently, Carr (2019) proposed

an alternate method for calculating the thermal diffusivity, under the same assumptions made

by Parker et. al (1961). In this paper, Carr (2019) shows that the thermal diffusivity can

be expressed in terms of the area enclosed by the rear-surface temperature rise curve and the

steady state temperature (Baba, 2009). This new formula was found to be more robust, in

relation to noisy data, than that proposed by Parker et. al (1961).

The foundation that Carr (2019) created was then extended upon shortly after. Specifically,

the alternate expression for the thermal diffusivity was modified to accommodate, firstly, for

finite pulse time effects only and then together with two-layered samples (Carr and Wood, 2019).

However, it must be noted that the research described is limited to one-dimensional geometries.

This report seeks to extend the work of Carr and Wood (2019) to radial, or unidirectional, heat

diffusion in two- and three-dimensional annular and spherical shell geometries, respectively, as

shown in Figure 1.
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Figure 1: Radial heat diffusion in multi-dimensional geometries.

The application of a finite pulse time effect is considered on the interior boundary, followed

by the external boundary, yielding one general formula with minor alterations in considera-

tion of both cases. Numerical experiments are then conducted to mimic a realistic laser flash

experiment, allowing the new formula for the thermal diffusivity to be rigorously tested. The

same levels of noise used by Carr and Wood (2019) are employed, and it is found that the heat

source location and number of dimensions strongly affect the accuracy of the new formula(s).

3 Statement of Authorship

The workload for this project was divided as follows:

• Dr Elliot Carr conceptualised the research project, guided the development of the

mathematical results, supervised the research, assisted with implementation of code and

interpretation of results, and reviewed this report.

• Luke Filippini developed the mathematical results, implemented code in MATLAB,

performed numerical experiments, collated and interpreted the results, and wrote this

report.

4 Mathematical Model

The mathematical model of key interest describes heat diffusion in the radial direction, defined

as
∂T

∂t
=

α

xd−1

∂

∂x

(
xd−1∂T

∂x

)
; ℓ0 < x < ℓ1, t > 0 , (1)
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where T (x, t) is the temperature (◦C) of the sample at time t (s) and radial position x (m),

d denotes the number of dimensions, and α represents the thermal diffusivity. Also, ℓ0 and ℓ1

denote the inner and outer boundaries, respectively.

For the derivation that follows, the initial condition

T (x, 0) = 0 (2)

is considered, accompanied by the boundary conditions

− k
∂T

∂x
(ℓ0, t) = q (t) (3)

and
∂T

∂x
(ℓ1, t) = 0 , (4)

where q (t) represents a finite heat pulse applied uniformly at the inner surface x = ℓ0. Addi-

tionally, we define the amount of heat absorbed into the system at time t as Q (t) =
∫ t

0
q (t) dt.

Given that the heat pulse is finite, it is assumed that the total amount of heat absorbed into

the system, defined as Q∞ =
∫∞
0

q (t) dt, is also finite. Moreover, any arbitrary heat pulse can

be considered, provided that limt→∞ q (t) = 0. Lastly, because the heat pulse q (t) is applied

uniformly, the temperature at any given point is independent of the angular direction.

5 Steady State Derivation

5.1 General Solution

Derivation of new thermal diffusivity formulas, for two and three dimensions, requires ex-

pressions for the steady-state temperature. This is because the rear-surface integral, de-

fined as
∫∞
0

[T∞ − T (ℓ1, t)] dt depends on a unique form of that temperature. To begin, let

T∞ (x) = limt→∞ T (x, t) represent the steady-state temperature. Now, consider taking the

limit as t → ∞ of the radial heat diffusion model (1):

lim
t→∞

(
∂T

∂t

)
= lim

t→∞

(
α

xd−1

∂

∂x

(
xd−1∂T

∂x

))
.
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By noting that ∂T∞
∂t

= 0, a homogeneous ODE is obtained for the steady state temperature

T∞,
α

xd−1

d

dx

(
xd−1dT∞

dx

)
= 0 . (5)

The same limit can be taken over the boundary conditions (3) and (4). Noting that limt→∞ q (t) =

0, the boundary conditions for (5) become

T ′
∞ (ℓ0) = T ′

∞ (ℓ1) = 0 . (6)

The ODE (5) can be integrated directly and rearranged to obtain

T ′
∞ (x) =

k1
xd−1

,

an expression for the derivative of the steady-state temperature.

The only value of the arbitrary constant k1 which satisfies condition (6) is k1 = 0. Hence,

the solution for the steady-state temperature must be a constant, defined here as T∞ = k2.

An additional condition is required to determine a unique form of T∞, namely conservation

of energy. The law states that the change in heat in the sample must be balanced by the

amount of heat entering the sample through the designated surface. From this point onwards,

we consider the cases of two (d = 2) and three (d = 3) dimensions separately.

5.2 Two Dimensions

In two dimensions, conservation of energy is defined, in polar coordinates, as

ρc

∫ 2π

0

∫ ℓ1

ℓ0

x T (x, t) dx dθ = 2πℓ0Q (t) , (7)

where 2πℓ0 is the circumference of the inner boundary. Taking the limit as t → ∞, and

integrating, allows the unique solution for T∞, in two dimensions,

T∞ =
2ℓ0Q∞

ρc (ℓ21 − ℓ20)
, (8)

to be determined.
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5.3 Three Dimensions

The same process can be repeated in three dimensions. Conservation of energy, in spherical

coordinates, is defined as

ρc

∫ π

0

∫ 2π

0

∫ ℓ1

ℓ0

x2 sinφ T (x, t) dx dθ dφ = 4πℓ20Q (t) (9)

where 4πℓ20 is the surface area of the inner sphere. Taking the limit as t → ∞ and integrating

yields

T∞ =
3ℓ20Q∞

ρc (ℓ31 − ℓ30)
(10)

as the unique solution for T∞ in three dimensions.

5.4 General Formula

Finally, a general formula for the steady state temperature can be derived, simply by noting

the forms of (8) and (10). The general form for the steady state temperature is

T∞ =
dℓd−1

0 Q∞

ρc
(
ℓd1 − ℓd0

) , (11)

valid only for the radial heat diffusion model (1)–(4). The derivation of the steady-state tem-

perature in the one-dimensional case, which (11) satisfies, can be found in Appendix 9.3.1.

6 Thermal Diffusivity Formulas

6.1 Derivation of ODE for u (x)

To begin deriving new thermal diffusivity formulas, consider the function below, which is a

generalisation of the rear surface integral
∫∞
0

[T∞ − T (ℓ1, t)] dt to any position or location x,

u (x) =

∫ ∞

0

[T∞ − T (x, t)] dt . (12)

The primary objective is to determine an alternative form for u (x), in both two and three

dimensions, such that it can be equated to (12) and then evaluated at the rear surface x = ℓ1.

Rearrangement for the thermal diffusivity α then follows. We start by defining the operator
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L := α
xd−1

∂
∂x

(
xd−1 ∂

∂x

)
and applying it to (12). Carrying out the integral yields an ODE for

u (x),
α

xd−1

d

dx

(
xd−1du

dx

)
= −T∞ . (13)

Taking the derivative of (12) and evaluating at x = ℓ0, followed by x = ℓ1, gives two boundary

conditions

u′ (ℓ0) =
Q∞

k
, u′ (ℓ1) = 0 , (14)

analogous to (3) and (4).

6.2 Solving for u (x)

The ODE (13) can be rearranged and integrated directly to yield a general solution for the

derivative,

u′ (x) = −T∞

dα
x+

a1
xd−1

. (15)

Incorporating both boundary conditions in (14) gives the same solution for the arbitrary con-

stant a1, that being a1 =
T∞ℓd1
dα

. This yields a unique solution for the derivative u′ (x),

u′ (x) =
T∞

dα

[
ℓd1

xd−1
− x

]
. (16)

6.2.1 Two Dimensions

The alternative form for u (x) must now be solved for separately in two and three dimensions.

We consider the case of two dimensions first. Firstly, the expression (16) is evaluated at d = 2

and integrated, providing a general solution for u (x),

u (x) = a0 +
T∞

2α

[
ℓ21 ln x− 1

2
x2

]
. (17)

To determine the arbitrary constant a0, we need a condition akin to conservation of energy

in two dimensions. By integrating (12) over the same limits as (7), multiplying through by x

and the volumetric heat capacity ρc, and incorporating the steady state expression (8), such a

condition is obtained:

ρc

∫ 2π

0

∫ ℓ1

ℓ0

xu (x) dx dθ = 2πℓ0

∫ ∞

0

[Q∞ −Q (t)] dt . (18)
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Direct substitution of (17) into (18) yields a unique solution for a0,

a0 =
2ℓ0

∫∞
0

[Q∞ −Q (t)] dt

ρc (ℓ21 − ℓ20)
− T∞

4α

[
2ℓ21 (ℓ

2
1 ln ℓ1 − ℓ20 ln ℓ0)

ℓ21 − ℓ20
− 1

2

(
3ℓ21 + ℓ20

)]
,

implying that a unique solution for u (x) in two dimensions is

u (x) =
2ℓ0

∫∞
0 [Q∞ −Q (t)] dt

ρc
(
ℓ21 − ℓ20

) − T∞
4α

[
x2 − 2ℓ21 lnx+

2ℓ21
(
ℓ21 ln ℓ1 − ℓ20 ln ℓ0

)
ℓ21 − ℓ20

− 1

2

(
3ℓ21 + ℓ20

)]
. (19)

6.2.2 Three Dimensions

Now, consider the expression (16) evaluated at d = 3. Direct integration provides a general

solution for u (x),

u (x) = b0 −
T∞

3α

[
ℓ31
x

+
1

2
x2

]
. (20)

Again, an analogous condition to conservation of energy, in three dimensions, is required to

determine a unique form of the arbitrary constant b0. Following the same process as outlined

in Section 6.2.1, a suitable condition is found to be

ρc

∫ π

0

∫ 2π

0

∫ ℓ1

ℓ0

x2 sinφ u (x) dx dθ dφ = 4πℓ20

∫ ∞

0

[Q∞ −Q (t)] dt . (21)

Substituting (20) into (21) gives a unique solution for b0,

b0 =
3ℓ20

∫∞
0

[Q∞ −Q (t)] dt

ρc (ℓ31 − ℓ30)
+

T∞

10α

(
6ℓ51 − ℓ20 (5ℓ

3
1 + ℓ30)

ℓ31 − ℓ30

)
,

which leads to a unique solution for u (x),

u (x) =
3ℓ20

∫∞
0

[Q∞ −Q (t)] dt

ρc (ℓ31 − ℓ30)
− T∞

3α

[
ℓ31
x

+
1

2
x2 − 18ℓ51 − 3ℓ20 (5ℓ

3
1 + ℓ30)

10 (ℓ31 − ℓ30)

]
. (22)

6.3 Determining Thermal Diffusivity

Finally, equating (19) and (22) to (12) leads to formulas for the thermal diffusivity in two

and three dimensions, respectively. Considering the two-dimensional case, equating (19) and

(12), evaluating the equation at x = ℓ1, and rearranging for α yields a formula for the thermal

diffusivity,

α =
1

8 (IT − Iq)

[
ℓ41 + 4ℓ21ℓ

2
0

∫ ℓ0
ℓ1

1
x
dx− ℓ40

ℓ21 − ℓ20

]
. (23)
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Performing the same process in the three-dimensional case gives the formula

α =
1

10 (IT − Iq)

[
ℓ51 + 5ℓ31ℓ

3
0

∫ ℓ0
ℓ1

1
x2 dx− ℓ50

ℓ31 − ℓ30

]
, (24)

where IT and Iq are defined as

IT =

∫ ∞

0

[
1− T (ℓ1, t)

T∞

]
dt Iq =

∫ ∞

0

[
1− Q (t)

Q∞

]
dt

6.3.1 General Formula

In the one-dimensional case, the formula in Appendix 9.3.2 can be manipulated into the form

α =
1

6 (IT − Iq)

[
ℓ31 + 3ℓ1ℓ0

∫ ℓ0
ℓ1

dx− ℓ30

ℓ1 − ℓ0

]
. (25)

Hence, it is entirely reasonable, based off the similar forms of (23), (24), and (25), to suggest

that a general form for the thermal diffusivity is

α =
1

2 (d+ 2) (IT − Iq)

[
ℓd+2
1 + (d+ 2) ℓd1ℓ

d
0

∫ ℓ0
ℓ1

1
xd−1 dx− ℓd+2

0

ℓd1 − ℓd0

]
, (26)

valid only for the radial heat diffusion model (1)–(4).

6.4 Application of Heat Source on Outer Surface

A natural question that arises is how applying the finite heat pulse to the outer boundary alters

the analysis previously carried out. Suppose the boundary conditions of the model (1)–(4) are

swapped to accommodate for this change,

∂T

∂x
(ℓ0, t) = 0,

∂T

∂x
(ℓ1, t) =

q (t)

k
. (27)

For brevity, it turns out that applying the same processes in Sections 5 and 6 yields a formula

visually identical to (26), with minor differences occurring in the definition of the integral IT
and the steady state temperature T∞,

IT =

∫ ∞

0

[
1− T (ℓ0, t)

T∞

]
dt, T∞ =

dℓd−1
1 Q∞

ρc
(
ℓd1 − ℓd0

) .
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7 Discussion and Results

7.1 Synthetic Data Using Finite Volume Method

The thermal diffusivity formula (26) can be verified using synthetic data, representing the rear-

surface temperature rise. To elaborate, the model (1)–(4), and also with alternate boundary

conditions (27), can be solved numerically using the finite volume method. This method con-

verts a spatially-continuous initial-boundary value problem into a spatially-discrete initial-value

problem. Hence, the temperature rise can be well approximated at a suitable number of points

in both space and time.

Let N denote the number of spatial nodes at which the solution T (x, t) is to be approxi-

mated. These nodes are labelled x1, ..., xN , and the corresponding numerical approximations

are labelled T1, ..., TN , where Ti ≈ T (xi, t), for i = 1, ..., N . The nodes are defined such that

x1 = ℓ0 and xN = ℓ1. Following on, let Vi = ei−wi denote the control volume for the ith node,

where

ei =


xi+1+xi

2
, i = 1, . . . , N − 1

xN , i = N

and wi =


xi+xi−1

2
, i = 2, . . . , N

x1, i = 1

are the west and east control volume boundaries, respectively. Lastly, let hi = xi+1 − xi denote

the spacing between each of the nodes.

Integrating (1) over each control volume interval [wi, ei], for i = 1, . . . , N , and applying

boundary conditions (3)–(4) yields a set of N ODEs). For an internal heat source, the ODEs

are

dT1

dt
=

α

V1ℓ
d−1
0

[
−ed−1

1

h1

T1 +
ed−1
1

h1

T2 +
ℓd−1
0 q (t)

k

]
,

dTi

dt
=

α

Vix
d−1
i

[
wd−1

i

hi−1

Ti−1 −
(
wd−1

i

hi−1

+
ed−1
i

hi

)
Ti +

ed−1
i

hi

Ti+1

]
, (i = 2, ...N − 1)

dTN

dt
=

α

VNℓ
d−1
1

[
wd−1

N

hN−1

TN−1 −
wd−1

N

hN−1

TN

]
.
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Alternatively, incorporating an outer heat source, with boundary conditions (27), alters the

first and last ODEs, giving

dT1

dt
=

α

V1ℓ
d−1
0

[
−ed−1

1

h1

T1 +
ed−1
1

h1

T2

]
,

dTN

dt
=

α

VNℓ
d−1
1

[
wd−1

N

hN−1

TN−1 −
wd−1

N

hN−1

TN +
ℓd−1
1 q (t)

k

]
.

The above set of ODEs, for either an internal or external heat source, are then solved using

MATLAB’s ode15s solver, using absolute and relative error tolerances of 10−12. Very accurate

approximations are obtained for the temperature at specific points in space and time. Figure

2 provides an example of synthetic data for the rear-surface temperature rise, accounting for

both heat source locations.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

(a) Inner Heat Source

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5

(b) Outer Heat Source

Figure 2: Synthetic Rear Surface Temperature Rise Curves.

For this numerical experiment, and those that follow, a triangular heat pulse was used, with

finite pulse time τ = 0.005 seconds and pulse peak occurring at β = 0.001 seconds.

q (t) =


2Q∞t
τβ

, 0 < t ≤ β

2Q∞(τ−t)
τ(τ−β)

, β ≤ t ≤ τ

0, otherwise

(28)

To generate the synthetic data, the following parameter values were used: k = 222 W m−1

K−1, ρ = 2700 kg m−3, c = 896 J K−1, giving a target value of α = 9.1766 × 10−5 m2 s−1 for

the thermal diffusivity. Additionally, radial boundaries of ℓ0 = 0.001 (m) and ℓ1 = 0.003 (m),

an end time of tN = 0.1 (s), N = 501 spatial nodes, and a temporal spacing of δt = 10−4 were
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chosen. These parameter values are consistent with those used by Carr and Wood (2019) and

are used in the analysis that follows.

Finally, the trapezoidal rule is used to calculate an approximation to the integral IT . Let

Tr (tj) be the numerical approximation of the rear-surface temperature rise at time t = tj, for

j = 1, . . . ,M + 1, where M is the number of temporal spacings. Thus, direct substitution of

the approximation

IT ≈ δt

2

[
T ∗
1 + 2

M∑
i=2

T ∗
i + TM+1

]
, where T ∗

j = 1− Tr (tj)

T∞
,

into (26) yields highly accurate estimates for the thermal diffusivity. The results are the same

for both heat source locations.

Target Value: α = 9.1766× 10−5

d = 1 d = 2 d = 3

9.1766×10−5 9.1766×10−5 9.1765×10−5

Table 1: Estimates of α using synthetic data.

7.2 Verification Using Noisy Data

Carr and Wood (2019) have already shown that the rear-surface integral method, incorporating

a finite pulse time effect, is less sensitive to measurement error (noisy data) than the half-rise

time method originally proposed by Parker et. al (1961). Thus, the analysis below investigates

how a change in both the number of dimensions and the boundary at which heat is applied

affects the accuracy of the general formula (26). For all tests, the same three levels of noise are

used, to be consistent with previous work.

We consider the case of adding Gaussian noise to the rear-surface temperature rise to mimic

a realistic laser flash experiment. This is defined mathematically as

T̃i = Tr (ti) + zi, for i = 1, ..., N ,

where zi is a random sample drawn from a normal distribution with mean zero and standard

deviation σ. The numerical experiments conducted use low (σ = 0.005), moderate (σ = 0.02)
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and high (σ = 0.05) levels of noise (Carr and Wood, 2019).

For one trial, an estimate of the thermal diffusivity, denoted as α̃, is calculated using

the rear-surface temperature rise with added noise. The relative error as a percentage, ε =

α̃−α
α

× 100%, is then determined to gauge the accuracy of the estimate. Over 10,000 real-

isations, we can construct histograms for both the percentage error and thermal diffusivity

estimates, which provide valuable insight into the overall trends and accuracy of the general

formula (26).

Figure 3, in Appendix 9.1, assumes that a heat source is applied on the internal bound-

ary. Clearly, an increasing number of dimensions is associated with a rear-surface temperature

rise of reduced significance. As expected, the histograms depict a wider range for both the

percentage error and thermal diffusivity estimates as the noise level increases. However, they

also show that numerical estimation of the integral IT , using the trapezoidal rule, becomes less

reliable as the temperature rise decreases in significance. Hence, this affects the accuracy of

the thermal diffusivity formula (26).

The histogram statistics gathered from the tests displayed in Figure 3 are provided in Table

2. As the number of dimensions increases, the absolute value of the mean, the standard devi-

ation, and gap between the minimum and maximum values of the percentage error also tend

to increase. This trend is far more bold and noticeable as the noise level rises. These effects

are clearly noticeable in the last three columns of Table 2. To elaborate, the accuracy of the

mean thermal diffusivity, in relation to the target value of α = 9.1766× 10−5, decreases as the

number of dimensions increases, which is again amplified by the level of noise. The minimum

and maximum values stray further from the true value due to the same cause.

In Appendix 9.2, Figure 4 and Table 3 display the results of applying the heat source

to the exterior boundary and conducting identical numerical experiments. The result is an

opposite effect to that described immediately above; namely, that that sensitivity of the thermal

diffusivity formula (26) to measurement error decrease with the number of the dimensions. This
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is because the rear-surface temperature rise curve is more prominent with an increasing number

of dimensions.

8 Conclusion

In this report, an extension to the rear-surface integral method, with finite pulse time effects,

has been provided (Carr and Wood, 2019). Specifically, the method has been extended to

investigate heat diffusion in the radial direction for two- and three-dimensional annual and

spherical geometries, respectively. By extending the rear-surface integral method developed

by Carr (2019), a general formula for the thermal diffusivity, applicable to any dimension,

was derived. It must be stated that the formula differs slightly depending on the location of

the heat source, and it is only valid for the model (1)–(4), or that with boundary conditions (27).

The new formula(s) for the thermal diffusivity was tested by adding Gaussian noise to an

accurate numerical solution of the rear-surface temperature rise for 10,000 realisations. It was

found that as the temperature rise curves, and corresponding steady-state temperatures, low-

ered in magnitude, estimations of the thermal diffusivity exhibited larger variability and, hence,

a decrease in accuracy.

This work has only extended on the finite pulse time effect introduced by Carr and Wood

(2019). Hence, further work could be done to investigate radial heat flow in two-layer samples.

Additionally, the effects of measurement noise were only considered for three fixed levels of

noise. Thus, another possible extension would be to investigate how scaling the noise levels

with a change in the number of dimensions affects the results.
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9 Appendix

9.1 Noise Experiments with an Inner Heat Source

Figure 3: Effects of various noise levels over 10,000 realisations (inner heat source).
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Dimension σ (z) µ (ε) σ (ε) min (ε) max (ε) µ (α̃) min (α̃) max (α̃)

d = 1

0.005 0.0021 0.1499 -0.5834 0.5704 9.1764×10−5 9.1242×10−5 9.2301×10−5

0.02 -0.0012 0.6015 -2.8750 2.5509 9.1769×10−5 8.9425×10−5 9.4404×10−5

0.05 -0.0225 1.5050 -5.1536 4.8764 9.1787 ×10−5 8.7291×10−5 9.6495×10−5

d = 2

0.005 -0.0022 0.3149 -1.2851 1.1087 9.1768×10−5 9.0748×10−5 9.2945×10−5

0.02 -0.0012 1.2777 -5.3311 3.9913 9.1767×10−5 8.8103×10−5 9.6658×10−5

0.05 -0.1255 3.2020 -13.5323 10.8871 9.1881×10−5 8.1775×10−5 1.0418×10−4

d = 3

0.005 -0.0043 0.7494 -2.7077 2.6390 9.1770×10−5 8.9344×10−5 9.4251×10−5

0.02 -0.0469 3.0183 -14.2802 10.4459 9.1809×10−5 8.2180×10−5 1.0487×10−4

0.05 -0.5548 7.5835 -34.6505 24.9569 9.2275×10−5 6.8864×10−5 1.2356×10−4

Table 2: Key statistics from noise experiments (inner heat source).
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9.2 Noise Experiments with an Outer Heat Source

Figure 4: Effects of various noise levels over 10,000 realisations (outer heat source).

18



Dimension σ (z) µ (ε) σ (ε) min (ε) max (ε) µ (α̃) min (α̃) max (α̃)

d = 1

0.005 0.0034 0.1496 -0.5949 0.5626 9.1763×10−5 9.1250×10−5 9.2312×10−5

0.02 -0.0127 0.5963 -2.2751 2.1313 9.1777×10−5 8.9810×10−5 9.3854×10−5

0.05 -0.0287 1.4940 -5.8266 5.5457 9.1792 ×10−5 8.6677×10−5 9.7113×10−5

d = 2

0.005 1.5297×10−5 0.1048 -0.3648 0.4013 9.1766×10−5 9.1398×10−5 9.2101×10−5

0.02 -0.0026 0.4254 -1.8659 1.5931 9.1768×10−5 9.0304×10−5 9.3478×10−5

0.05 -0.0095 1.0591 -4.2806 3.6489 9.1775×10−5 8.8417×10−5 9.5694×10−5

d = 3

0.005 6.9599×10−4 0.0825 -0.2919 0.3012 9.1765×10−5 9.1489×10−5 9.2034×10−5

0.02 0.0018 0.3316 -1.3155 1.2268 9.1764×10−5 9.0640×10−5 9.2973×10−5

0.05 -0.0017 0.8240 -3.1732 2.6755 9.1767 ×10−5 8.9311 ×10−5 9.4678 ×10−5

Table 3: Key statistics from noise experiments (outer heat source).

9.3 Derivations in the One-Dimensional Case

9.3.1 Steady-State Temperature

Using the results of Section 5.1, we continue from the point where the steady state temperature

is shown to be a constant for all dimensions, T∞ = k2. To determine the form of the steady

state temperature, the law of conservation of energy in one dimension is considered.

ρc

∫ ℓ1

ℓ0

T (x, t) dx = Q (t) (29)

That is, the change in heat in the interval [ℓ0, ℓ1] must be balanced by the amount of heat

entering through the front surface. Taking the limit as t → ∞,

lim
t→∞

(
ρc

∫ ℓ1

ℓ0

T (x, t) dx

)
= lim

t→∞
Q (t) ,

yields a formula for the steady state temperature,

T∞ =
Q∞

ρc (ℓ1 − ℓ0)
.
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9.3.2 Thermal Diffusivity

Consider equation (15), defined as

u′ (x) =
T∞

αd

[
ℓd1

xd−1
− x

]
,

for ease of reference. In one dimension, the derivative can be simplified and integrated to

determine a general form for u (x),

u (x) = c0 +
T∞

α

[
ℓ1x− 1

2
x2

]
. (30)

To determine the form of c0, there needs to be an analogous condition to conservation of

energy in one dimension. The condition can be determined by integrating (12) over the interval

[ℓ0, ℓ1] and multiplying by the volumetric heat capacity ρc, giving

ρc

∫ ℓ1

ℓ0

u (x) dx = ρc

∫ ∞

0

∫ ℓ1

ℓ0

[T∞ − T (x, t)] dx dt ,

which, after incorporating (29), ultimately yields

ρc

∫ ℓ1

ℓ0

u (x) dx =

∫ ∞

0

[Q∞ −Q (t)] dt. (31)

Thus, substituting (30) into (31) yields

c0 =

∫∞
0

[Q∞ −Q (t)] dt

ρc (ℓ1 − ℓ0)
− T∞

6α

[
2ℓ31 − 3ℓ1ℓ

2
0 + ℓ30

ℓ1 − ℓ0

]
as the solution for c0, implying that the solution for u (x) in the one-dimensional case is

u (x) =

∫∞
0

[Q∞ −Q (t)] dt

ρc (ℓ1 − ℓ0)
+

T∞

α

[
ℓ1x− 1

2
x2 − 2ℓ31 − 3ℓ1ℓ

2
0 + ℓ30

6 (ℓ1 − ℓ0)

]
. (32)

Finally, equating (12) and (32), both evaluated at x = ℓ1, yields a formula for the thermal

diffusivity α,

α =
(ℓ1 − ℓ0)

2

6 (IT − Iq)
.
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