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1 Abstract

This project presents infilling methods of missing climate time series values considering three

types of patterns of missing data, with both scattered and continuous gaps. Three time

series variables, namely solar farm output, wind farm output and ambient temperature were

studied. An additive model consisting of a Fourier series and an autoregressive model was

applied to model and simulate the seasonal and stochastic variations.

2 Introduction

Detecting and handling missing data could be the essential pre-processing task in the time

series modelling area. The occurrence of the missing values might be attributed to several

reasons, e.g., faulty measuring instruments or human errors. In climate time series analysis,

construction of forecast models depends on the quality of the data as parameter estimation

is affected by the gaps [Ramos-Calzado et al. 2008].

Some conventional methods to deal with missing values such as simply deleting or replacing

the gaps with mean values, could be applied for a small amount of missing values. However,

the model results under this approach will be inaccurate or even biased for the increasing

number of missing records [Pratama et al. 2016]. More advanced missing data imputation

for the time series variables could be dealt with using interpolation e.g., linear or using cubic

splines. However, for longer gaps of days or weeks, which is often the case in some climate

variables, more sophisticated techniques will have to be employed.

In this project, we used Fourier series and autoregressive (AR) model [Farah & Boland 2021,

Boland 2020] to infill missing data for solar farm output, wind farm output and ambient

temperature. The results of ambient temperature are shown in the Appendix.

Statement of Authorship

John and Sleiman conceived the main idea and outline for the infilling methods, guided and

supervised the project work, and proofread the report. John designed the proposal as well

as provided the data. Under the continuing academical assistance from John and Sleiman,

Hanyi designed and created the missing values, developed the code in R, built the models,

produced the infilling outcome, and wrote this report. AMSI and the Australian Department
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of Education funded the project.

3 Data

The data used in this project is kindly provided by my proposal supervisor, Professor John

Boland, which is collected from two areas in Australia, i.e., New South Wales and South

Australia (see Table 3.1). All variables are complete.

Two types of models are typically used to decompose time series data, additive and multi-

plicative. Equation 3.1 is the equation of additive time series and Equation 3.2 is the equation

of multiplicative time series. In this project, we are using additive model in particular.

Additive TS = Trend + Seasonality + Random Noise (3.1)

Multiplicative TS = Trend� Seasonality� Random Noise (3.2)

Table 3.1 describes those variables with their locations and data characteristics. In this

project, we consider the variables at both low-resolution levels such as daily, and high-

resolution levels such as 5 and 30 minutes.

Table 3.1: Data Characteristics.

Variable Location Interval Duration Characteristics

Solar Farm Output Broken Hill 5-minute 2 years No Trend

Wind Farm Output Snowtown 30-minute 15 years No Trend No Seasonality

Maximum Temperature Kent Town Daily 43 years No Trend

We simulate the scattered and continuous gaps among the variables such that the situations

where data is missing are generated, and we assume the records were missing completely

at random for simplicity, such that our models don’t require additional algorithms for inves-

tigating the cause of missing patterns and the likely values for the gap [Moritz et al. 2015,

Rubin 1976].

What’s more, we use day as unit for data in high-resolution level, and year as unit for data in

low-resolution level.

Three types of artificial gaps are studied. The first one is the case when the observations are

missing within one day (or one year), the second one is the case when the observations are
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missing more than one day (or one year), the last one is the case when there is a miscella-

neous missing situation with both scattered and continuous gaps at random.

If there is more than 1/3 of values missing within one-day (or one-year) period, then we

define it as a single day (year) missing. For solar farm output, a single day missing is defined

by if more than 1/3 of values missing in the mid-day where the sunshine comes, such that

we get rid of the meaningless zero values.

4 Models and Results

4.1 Methods

The first step is determining the type of time series, that is, detect whether the variable has

inherent trend and seasonality, or with some random noise, and find whether to use additive

decomposition or multiplicative decomposition. This could be reviewed in Table 3.1.

The way we infill the gaps is based on patterns of missing data and types of the time series

for each variable, as shown in Figure 4.1.1.

Figure 4.1.1: Roadmap of the methodology.

The easiest case is when one data record is missing, we could take the average of the previous
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and next value to fill that missing place. If the data is missing for a whole day, then we simply

take the average of the day before and day after the missing values.

If there is a gap missing, we have several solutions depending on the cases. If another year of

data is available, we could just fill the gaps with the same days from this year. If there is no

other year available, and the variable has seasonality, we could use the Fourier series model.

Otherwise, we may need to simulate the synthetic data.

If data is missing at random times, we need to model the data and simulate the synthetic data

according to the data characteristics. In summary, different modelling techniques are utilised

to handle different parts of the series (see Figure 4.1.2).

Figure 4.1.2: Roadmap of the methodology for miscellaneous missing situation at random.

For an additive time series which is the case in this project, the following forecast models are

considered. We first detect the trend using a linear model with a result of fitted values F1 and

residuals R1. R1 is simply the difference between the original data and fitted values. Then

the seasonality of the data could be modelled using the Fourier series model on R1, and we

obtain the new fitted values F2 with its residuals R2. Apart from the trend and seasonality,

autoregressive model can be used to model to the remaining stochastic variations which is R2
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here using its autocorrelation. The last �tted values F3 is calculated. The �nal result is the

sum of all �tted values which is F1 + F2 + F3.

If there is no trend, we skip the linear model. If there is no seasonality, we skip the Fourier

series model. Similarly, if there is no stochastic variation, then we skip the autoregressive

model.

When we start to in�ll the missing values, Fourier series model is trained �rst from a complete

series and then the same parameters are applied to the testing series; linear model and

autoregressive model are used for generating the synthetic data for testing data directly. To

validate our results, we could either look at the line plot or �nd whether our models did the

work properly. For example, the residuals of the autoregressive model should be uncorrelated

and their mean should be zero.

4.1.1 Fourier Series Model

To identify the signi�cant seasonal component, one way is to use the power spectrum when

we are not able to �nd the cycles clearly by looking at the graph. Power spectrum is a

plot of the signal power lying at each frequency, the more signi�cant cycles, the more the

contribution to the variance of the series, the greater the power [Boland 2010].

As long as we �nd the most signi�cant cycles during the sample interval n, we could minimize

the sum of the squared deviations of the model from the data to �nd the optimal ai and bi

using the equation as follows

F (t) = a0 +
kX

i

(ai cos(2�it=n ) + bi sin(2�it=n )) (4.1)

t = 1; 2; 3; : : : ; n; a0 = avg(St );

k = signi�cant cycles during the sample interval n

Consequently, power modelF (t) is able to be calculated using Equation 4.1, given a complete

training series St .

4.1.2 Autoregressive Model and Synthetic Generation

An autoregressive model forecasts the target variable using a linear combination of past val-

ues of itself. The reason we did this is because of the autocorrelation existing within the time
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series.

Autocorrelation describes the linear dependences between the current seriesCt and its lagged

version Ct � 1; Ct � 2; : : : ; Ct � k therefore providing insights on how their degree of similarity and

tendency evolves in time. As such, it is a key element in re�ning information from the data

and �lling in the gaps.

An autoregressive model of orderp can be written as

Ct = � 0 + � 1Ct � 1 + � 2Ct � 2 + : : : + � pCt � p + " t ; (4.2)

where t = 1; 2; : : : ; n, � 0 is the constant, � 1; � 2; : : : ; � p is the coef�cients of the AR model,

Ct � 1; Ct � 2; : : : ; Ct � p are lagged values of Ct , and " t is the remaining random noise. It is

assumed that the" t is independent and identically distributed (i.i.d.).

Equation 4.2 is also used for the situation when we need to simulate the synthetic data. It

happens when there is a large gap of missing data, that there is not enough existed lagged

data to guide the further �uctuation appropriately. Therefore, we have to manually detect

the missing places and �ll those missing records after we perform the AR model.

This could be done using the form of Equation 4.2 and the AR model parameters we obtained

previously. The procedure is shown in Algorithm 1. As a �rst approximation, a normal

distribution is investigated to sample " t here, and this would be re�ned by working on the

distributional characteristics in our further work.

Moreover, if there is trend in the series, then the constraint in Algorithm 1 will change to

MIN (St ) < C t + F (t) + Y(t) < MAX (St ) is true, where Y(t) is the �tted values we got when

we model its trend.

Akaike information criterion (AIC) is used to �nd the optimal p order. Given a set of candidate

models with different parameter, the preferred model is the one with the minimum AIC value.

AIC could be written as

AIC = T ln
�

SSE
T

�
+ 2( k + 2) ;

where T is the number of observations used for estimation andk is the number of predictors

in the model [Hyndman & Athanasopoulos 2021].
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Algorithm 1: Filling the Missing Values using Fourier series plus Autoregressive Algorithm when the Series

has no Trend.
Input: Incomplete Ct , Incomplete raw seriesSt , Complete seasonal model �tsF (t)

Output: Complete Ct

1 M  MAX (St );

2 m  MIN (St );

3 for t = 1 to n do

4 if Ct == null ^ Ct � 1 ! = null ^ : : : ^ Ct � p ! = null then

5 Ct  � 0 + � 1 � Ct � 1 + : : : + � p � Ct � p;

6 Ct  Ct + " t ; // where " t � N (0; � 2
t )

/* make sure MIN (St ) < C t + F (t) < MAX (St ) */

7 while Ct + F (t) > M _ Ct + F (t) < m do

8 Ct  � 0 + � 1 � Ct � 1 + : : : + � p � Ct � p + " t ;

9 end

10 end

11 end

12 return Ct ;

4.2 In�lling Results of Solar Farm Output

Figure 4.2.1: Solar Farm Output Power Spectrum.

We take �ve-day data to train our model for

solar farm output. There is no trend de-

tected in the data, so we use power spec-

trum to �nd the signi�cant cycles �rst. In the

power spectrum, the signi�cant spikes deter-

mine which frequencies are to be included in

the Fourier series model.

Figure 4.2.1 demonstrates that there are 5,

10 and 20 cycles in 5 days. We note that

these frequencies are reasonable because they match our knowledge for solar radiation; once-

a-day distinguishes the days, twice-a-day and four-times-a-day point to the �uctuation of

solar radiation within a day.
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We de�ne the Fourier series representation of the solar farm output series as follows:

F (t) = 14:5 +
f 5; 10; 20gX

i

(ai cos(2i�t= 1440) + bi sin(2i�t= 1440)); (4.3)

t = 1; 2; 3; : : : ; 1440:

Table 4.1 lists theai , bi values that minimise the sum of squared deviations of the model from

the data.

Table 4.1: Values of the Fourier Series Model Parameters of Solar Farm Output.

i a i bi

5 � 22.7960 � 4.2534

10 9.4369 3.8729

20 � 4.0137 � 2.4325

Figure 4.2.2 shows the model results we got from training set, it veri�es that the summarised

result of Fourier series model and AR(5) model is suf�cient for modelling the solar farm

output. Figure 4.2.3 is the result we got when we apply the same Fourier series model to

testing set.

The optimal AR model for the testing residuals we got from Fourier series model is

Ct = 0:6713� Ct � 1 � 0:0479� Ct � 2 + 0:1586� Ct � 3 + 0:0568� Ct � 4 + 0:1240� Ct � 5 + " t : (4.4)

To be noted that equation of AR(5) for training set is different from Equation 4.4 as testing

set has different autocorrelation from training set. We simulate the synthetic data using

Equation 4.4 to �ll the missing values in the case when the data is missing quite a lot.

Figure 4.2.4, Figure 4.2.5 and Figure 4.2.6 demonstrate the results we got for solar farm

output. It could be seen in Figure 4.2.4, that our �lled data perfectly covers the raw data

which is great. In Figure 4.2.5, we use the data from previous year so the �uctuations are

not similar, but it is still reasonable. Figure 4.2.6 illustrates the synthetic data we simulated.

Our model result here is in between the minimum and maximum of the raw data which

looks successful. Meanwhile, Figure 4.2.6 proves that different subsets of data from the same

variable have their own AR models, and the presence of missing records do reduce the model

quality.
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