
Control Strategies for a

Superspreading Virus at Low

Prevalence

Kristian Caracciolo
Supervised by Joel Miller

La Trobe University

Vacation Research Scholarships are funded jointly by the Department of Education, Skills and Employment

and the Australian Mathematical Sciences Institute.



Abstract

This project sought to investigate the super-spreading dynamics displayed by viruses such as SARS-CoV-

2 in low prevalence settings like those that exist in Australia. In near extinction settings, the importance of

random events to the transmission of the virus are greater as opposed to populations where the virus is better

established and the behaviour becomes more deterministic. Super-spreading events are the manifestation of

the stochastic nature of disease transmission wherein the number of infections caused by a single person is

occasionally well above average. Mathematically this behaviour can be modelled using probability distribu-

tions such as the negative binomial distribution. To study this behaviour, we develop a generation-based

stochastic SIR model to simulate the propagation of a super-spreading virus beginning from a single infected

person. The developed model is subsequently used to gain some insight into optimal resource allocation

by studying the effect that varying parameters such as tracing efficiency, tracing capacity and background

testing rate have on the probability of an epidemic emerging.

Keywords: SARS-Cov-2, Super-spreading, Negative Binomial Distribution, Stochastic SIR Model, Resource

Allocation

1 Introduction

The emergence of the SARS-CoV-2 in late 2019 from Wuhan China (Shereen et al. 2020) has had a profound

impact on the world. Beyond the obvious consequences to the health of those who develop COVID-19 which

has resulted in more than 2 million deaths (Dong, Du, and Gardner 2020), the hazard to mental health posed

by the disease is emerging with high rates of anxiety, depression and psychological distress being reported in

many countries experiencing outbreaks (Xiong et al. 2020). Travel restrictions, lock-downs, and unpredictable

spending behaviour by the public have slowed supply chains, trade and created a number of market anomalies

resulting in a reduction of global GDP (Baldwin and Mauro 2020).

A great number of these deleterious e�ects resulting from the spread of the virus can be mitigated or avoided

entirely if the virus is prevented from being establishing itself. Thus, it is important to understand how viruses

like SARS-Cov-2 propagate in populations where it is near extinction and how e�ective containment responses

should be to eliminate the chance of pandemic spread. The transmission dynamics of SARs-CoV-2 are charac-

terised by super-spreading events in which a small number of infected are responsible for a disproportionately

large number of infections. The random nature of these super-spreading events means the impact on low preva-

lence communities di�ers from high prevalence ones. For instance, a super-spreading event in which 30 people

are infected will be more impactful to the propagation of the virus in a community in which only a handful of

infected exist versus one in which many thousand exist.

To investigate the e�ects of interventions on the probability that a super-spreading virus reaches extinction,

we develop a stochastic SIR model to simulate the propagation of a virus through a community beginning

with a single infection. We subsequently vary parameters relating to the containment response like the tracing

e�ciency, tracing capacity and background testing rates to gain some insight on where limited resources would be

best allocated to combat a super-spreading virus. We conclude that within the context of preventing outbreaks,

high tracing capacities are least e�ective whilst high tracing e�ciencies and background testing rates are highly

e�ective albeit potentially di�cult to achieve.
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2 Statement of Authorship

This report, the SIR model at the core of the project along with all supporting functions were written by

Caracciolo with input and supervision from Miller. All �gures contained in the report were generated by

Caracciolo in Python 3.7.4 with input from Miller. Interpretation and discussion of all results produced by the

project are once again the product of Caracciolo and Miller.

3 Virus Modelling

A commonly employed model for the transmission of infectious diseases is the SIR (susceptible, infected, removed

or recovered) model. The model emerged in the early twentieth century in part from the work of Ronald Ross

and William Hamer (Weiss 2013). The model begins with a population divided into three groups; those who

are susceptible to infection, those who are infected and those who are removed following recovery from the

infection. The SIR model employs a number of assumptions which are present in our implementation such as

a closed population, the absence of any natural deaths or births, individuals becoming infectious immediately

upon being infected, interaction of groups being proportional to the group size and once recovered, individuals

are unable to be infected again (Weiss 2013).

Traditionally, an SIR model is deterministic, using di�erential equations to describe the rate at which

individuals transition between each of the groups of the model. For this project we instead opt for a stochastic

SIR model which simulates the propagation of the virus through the population according to discrete probability

distributions called o�spring distributions. Stochastic SIR models allow us to account for the random nature

of super-spreading events. Additionally, the model we employ is generational which for the purpose of our

simulation means that the unit of time represented is the period of time that infected individuals remain

infected. This means we are fundamentally unable to account for heterogeneity in the period of time that

people are infectious and cannot account for any incubation time, heterogeneous or otherwise.

Our model begins with a list of susceptible people of a size de�ned by user inputs; 10000 for all simulations

performed here. One of these people is then infected and added to a list of infected persons. For each person in

the list of infected, the simulation samples from an o�spring distribution to determine the number of infections

that would be caused. If the output of the o�spring distribution is n, then n people are selected at random from

the total population list and added to the list of infected if susceptible whilst the persons causing infections

in the current generation have their status set to recovered. This process repeats until the number of infected

reaches zero.

Prior to causing any new infections there is a chance that infected people are essentially sequestered by

having the outcome of the o�spring set to 0. This probability is referred to as the tracing e�ciency and

was made to decay as a function of the current number of infections to represent a tracing system becoming

overwhelmed. The rate of decay is based on a Holling’s type II functional response predator prey model where

the rate at which predators can process new prey is not proportional to the rate at which the prey population

increases (Real 1977). In the context of our SIR model, as the number of infected increases, it becomes less

likely they are identi�ed by tracing. The rate of decay is determined by the simulation input named tracing

capacity as shown below in equation 2 where E(i) is the current tracing e�ciency, Emax is the input maximum

e�ciency, i is the number of infected and C is the input tracing capacity. The rate of decay is also shown in
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Figure 1. Our model loops over a number of tracing e�ciencies and capacities.

E(i) = Emax � Emax

(
i
c

1 � i
c

)
(1)

Figure 1: Hyperbolic decay of tracing e�ciency as a function of number of infected. Curve based on Holling’s

type II functional response. Input parameters are Emax = 0.9 and c = 500.

As mentioned earlier, o�spring distributions are those used to describe the manner in which a virus prop-

agates in models like SIR. The distributions we consider fall into one of two categories, those describing het-

erogeneous and homogeneous transmission. The latter of these modes is often modelled using the Poisson

distribution shown in Figure 2. The Poisson distribution is characterised by a mean value, R, such that on

average the number of new infections caused by an infected person is R. This mean value R is often referred to as

the ’reproduction number’. This distribution bears a relatively small variance compared to that used to model

heterogeneous transmission; the negative binomial distribution. The negative binomial distribution shown in

Figure 3 is characterised by a dispersion parameter, k, in addition to the mean value, R, that dictates the

variance of the distribution. It is this dispersion parameter which allows for super-spreading to be accounted for

by means of introducing a large variance. Values of k < 0:5 are considered to represent extreme super-spreading

whilst 0:5 < k < 1:0 indicate moderate super-spreading. When modelling the spread of SARS-CoV-2, the

Poisson distribution is often used where reproduction numbers alone are of interest (Chintalapudi et al. 2020).

Such investigations are typically considering the rate at which the virus propagates in higher prevalence settings.

Studies of lower prevalence setting which investigate the emergence of outbreaks tend to utilise the negative

binomial distribution (Kucharski et al. 2020) for that fact that it can account for the stochastic super-spreading

events which inuence the probability the virus reaches extinction. The use of the negative binomial distribution

doesn’t appear to have any motivation beyond its ability to �t observed o�spring distributions.
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Figure 2: Histogram plot showing the results of sampling the Poisson distribution with a mean value of 2.5 a

thousand times. All outcomes are clustered relatively closely around the mean value.

A key output of our simulation was the extinction probability which we de�ne as the probability that the

virus dies out before infecting a signi�cant portion of the population. Within the context of our SIR model,

we consider the virus as having failed to propagate if less then 100 of our 10000 population are infected before

extinction. The probability of this occurring emerges as the proportion of a large number of simulations that fall

in this category of fewer than 100 infections. The extinction probability depends on a number of the simulations

inputs such as tracing e�ciency, background testing rates and o�spring distribution. In the absence of a limited

tracing capacity, it is also possible to extract the extinction probability using probability generating functions.

Probability Generating Functions (PGFs) are a useful tool in modelling the stochastic behaviour of pandemic

outbreaks. Despite the name, PGFs do not in fact generate probabilities from a given input value. Instead,

their name indicates that the function is generated from a sequence of numbers in the form shown in equation

(2) where ri is the probability of selecting the value i from a given discrete probability distribution (Miller 2018).

In the case of a PGF, this sequence of numbers represents a probability distribution of integers.

f(x) = �irix
i (2)

Using PGFs, we may derive the probability of a virus reaching extinction at some generation of its spread.

Though useful tools, it can be di�cult if not impossible to account for the e�ect that interventions like contact

tracing, the delay with which tracing is implemented after an outbreak is discovered and the background testing

rate have on the probability of extinction using PGFs. Part of this di�cultly arises from the fact that PGFs rely

on two events being independent and aspects of our simulation like tracing capacity introduces a dependence
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Figure 3: Histogram plot showing the results of sampling the Negative Binomial distribution with a mean value

of 2.5 and dispersion parameter 0.16 a thousand times. Compared to the Poisson distribution (Figure 2) a

much greater variance of observed. The occurrences where the outcome is greater than 10 could be considered

super-spreading events given that they are well above the mean. To maintain the same mean value as the

Poisson distribution, these super-spreading events are accompanied by a greater number of 0 outcomes.

between the probability of extinction and the number of infections in previous generations. The only aspect of

the interventions that we account for using PGFs is a constant tracing e�ciency.

4 Method

The stochastic SIR model used was written in Python 3.7.4. The parameters of the simulation are population

size, o�spring distribution type, reproduction factor, dispersion coe�cient, tracing e�ciency, tracing capacity,

self-reporting rate, tracing delay and stopping threshold. Reproduction factor and dispersion coe�cient have

been explained in the earlier paragraph on distribution types. Unless stated otherwise, all simulations presented

with this report utilise a reproduction factor of 2.5 and in the case of the negative binomial distribution a

dispersion parameter of 0.16. All simulations shown use a population size of 10000. Tracing e�ciency and

tracing capacity were explored in the earlier discussion on the SIR model and Holling’s type II functional

response alongside Figure 1. Our simulations sweep over a range of tracing e�ciencies between 0 and 1 and

tracing capacities between 0 and 300.

Self-reporting rate and tracing delay dictate the generation at which tracing begins. Self-reporting rate

represents the proportion of infected individuals that test and isolate themselves. Tracing can only begin after

the �rst successful self-reported case either beginning at that moment if tracing delay is zero or where tracing

delay equals some positive integer n, beginning n generations after the �rst self-reported case. The stopping
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threshold is a parameter used to speed up the computation time of simulations. It does so by terminating the

simulation prematurely if the number of infected reaches the stopping threshold under the assumption that

the virus would have reached pandemic levels. This shortcut arose from our early observation that simulations

produced results in one of two distinct categories; extinction by failure to propagate or extinction via depletion

of the susceptible population. Failure to propagate can be seen in Figure 4 where the number of recovered

individuals and the number of times the virus failed to infect a person who had either recovered or was currently

infected is shown for 1000 repetitions of the simulation. The clustering around 0 recovered indicates the virus

failing to propagate whilst the cluster around 10000 failed infections indicates a depletion of the susceptible

population. The clear segregation of results into these two groups served as justi�cation for categorising any

simulation resulting in greater than 100 infections as a pandemic.

Figure 4: Histogram plot showing the results of 1000 stochastic SIR model simulations in terms of the number

of recovered individuals and infections that failed due to the recipient already having been infected for the

negative binomial distribution. Note, the y-axis has been limited to 100 to better resolve the clusters at high

recovered and failed reinfection counts.

5 Results

Given that we swept over a range of tracing e�ciencies and capacities, we found our data set to be best

represented using contour plots seen in Figures 5 and 6. In these contour plots we use the colour bar to de�ne

the probability of an pandemic occurring ( 1 - extinction probability) to gain a visually intuitive depiction of

the trends with respect to tracing capacity and e�ciency. Our early results are shown in Figure 5 which utilised

a �nite capacity tracing that begins immediately upon the �rst infection. It is apparent that for the same

reproduction factor, outbreaks are much more likely to occur when modelling with the Poisson distribution

over the entire range of capacities and e�ciencies. This is certainly a result of the greater likelihood for 0

new infections using the negative binomial distribution resulting in instant extinction of the single infection

our SIR model begins with. The trend which emerges with respect to tracing e�ciency is an unremarkable

one; the probability of extinction increases rapidly with increasing tracing e�ciency. The trend emerging with

respect to tracing capacity was notable in that the extinction probability quickly approaches a limit above a
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capacity of approximately 60. At especially low tracing capacities, a signi�cant increase in the probability of a

pandemic is observed even for high tracing e�ciencies above 0.9. Both trends seem to suggest that with regard

to the likelihood of extinction, it is only necessary to have a tracing capacity high enough to prevent immediate

collapse of the tracing system as infection counts begin to increase.

Figure 5: Contour plots showing the probability that an outbreak reaches pandemic levels for both the Poisson

and Negative Binomial o�spring distributions. For high tracing capacities, extinction probabilities presented

here are approximately equivalent to those attained from PGFs.

Incorporating self-reporting rates and a delayed tracing system as detailed in the methods section, allowed

the investigation of new trends. Comparing the results of these simulations to those in Figure 5 helps to

realise the threshold at which the delay to the onset of tracing cannot be overcome by the aid of the persistent

background testing rates. The left plot of Figure 6, representing a self-reporting rate of 10%, is clearly below this

threshold as pandemics appear more likely across the range of capacities and e�ciencies. To better visualise

the comparison being made we produced contour plots that display the di�erence in extinction probability

between the delayed tracing case in which capacity is �nite and tracing does not begin until an infected person

successfully self-reports, and the PGF case wherein tracing is both immediate and has in�nite capacity. We

refer to these as di�erence plots (see Figures 7 - 9). It should be noted that in these plots, colour represents

the di�erence in extinction probability as opposed to the probability of a pandemic like in Figures 5 and 6.

The di�erence calculated in these plots is de�ned as simulation probability minus PGF probability. Thus,

bluer hues in the di�erence plots indicate regions where the simulation is performing more poorly than the

PGF. With this knowledge, two regions separated by a minimum at a tracing e�ciency of 0.6 emerge. For

tracing e�ciencies less than 0.6, the simulation performs better than the PGF. This is most likely due to the

self-reporting rate being comparable or greater than the tracing e�ciency in this regime leading to more rapid

extinction. Above the minimum, the simulation seems unable to produce the same extinction probabilities

achieved by the PGF. In this regime, the same contours seen in the earlier plots of pandemic probability

appear to return. We believe this to be due to the PGF having an extinction probability of zero for tracing

e�ciencies above 0.6, which by our de�nition of di�erence, means the di�erence is equal to the simulation value

of extinction. We return to this point with Figures 10 and 11.

Experimenting with beginning tracing in the generation following detection of the virus, extinction in the
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Figure 6: Contour plots showing the probability of a pandemic in a simulation with a delayed tracing onset

using the negative binomial distribution. Plots from left to right correspond to self-reporting rates of 10% ,

30% and 50% . Outcomes for 10% plot poorer than those presented in Figure 5 which incorporated no tracing

delay.

Figure 7: Contour plots showing the di�erence between PGF and simulated extinction probability in the manner

described on page 7 for the same simulation seen in Figure 6. Simulation results attained with a tracing delay

of zero using the negative binomial distribution for tracing e�ciencies from left to right of 10% , 30% and 50%.

Notably, a minimum in the di�erence appears at 0.6 tracing e�ciency.

high tracing e�ciency region are notably poorer (see in Figure 8). Conversely, for low tracing e�ciencies below

the minimum di�erence, the additional delay does not appear to produce substantially poorer results. Once

again this can be explained by tracing having less relative importance in this region. We see almost identical

trends in Figure 9 where the Poisson distribution is used with all other parameters remaining unchanged.

However, the magnitude of the di�erence is drastically larger as seen by the colour bar that covers a range of

roughly � 70% .

The minimum value which emerged in the di�erence plots was of interest to us. Figures 10 to 13 were

produced to investigate the behaviour and origins of this minimum. the tracing e�ciency at which it manifests

appears to depend only on the reproduction factor of the o�spring distribution used whilst its magnitude
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